
SERS

USDR&R (T&E)

Software Test and Evaluation Project

GIT-SERC-87/03

Software Test and Evaluation Manual

Volume II

GUIDELINES FOR SOFTWARE TEST AND EVALUATION

in the

DEPARTMENT OF DEFENSE

25 February 1987

Prepared for

OUSDRE (T&E)
The Pentagon, Room 3E1060
Washington, D. C. 20301

Supported by

U. S. Army Missile Command
ATTN: AMSMI-PC-BFB
Redstone Arsenal, AL 35898-5280

Unclassified
SECURITY CLASSIPFICATION OF THIS PAGE (.,,o , :,-...,0 ,_ __ _ Does _______,

REPORT DOCUMENTATION PAGE BEFORE COMPLESTING•ORM
I. REPOIT NUMUR ' . GOVT ACCESSION NO. 1. RECIPIENT'S CATALOG NUMBER

GIT-SERC-87/03
4. TITLE (and Smabtfift) S YEO EOT6PRO oja

Software Test and Evaluation Manual, Volume II, '*rlTechnical Report
Guidelines for Software Test andEvaluation
in the Department of Defense S. P&RPORMIN4 ORG. REPORT NUMBER

GIT-SERC-87/03
7. AUTHOR(a) S. CONTRACT OR GRANT NUMRER(et)

Software Test and Evaluation Project BOA DAAH0)1-85-D-AO05
DO 0008 and 0012

9. PZRFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERSSoftware Test and Evaluation Project

Software Engineering Research Center
Georgia Institute of Technology, Atl. GA 30332

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT LATE

U.S. Army Missile Command February 25, 1987
Redstone Arsenal, Alabama 35898-5280 13. NUMBEROFPAGES

129 + viii
14. MONITORING AGENCY NAME A ADORESS(ll different from Controlldng Office) IS. SECURITY CLASS, (of this re.rt)

Unclassified
15s, DECL ASSI FI CATION/DOWNGRADING

SCHEDULE

16. OISTRIBUTION STATEMENT (of this Report)

Unl imi ted

17, DISTRIBUTION STATEMENT (of the abetreect entered in Block 20, it different free Repo•t)

III. SUPPLEMENTAR~V NOTES

"IS. KEY WORDS (Continue en roer. aide if noceeary mid identify by block number)
Software Test and Evaluation Manual; Software Test and Evaluation Project(STEP);
mission critical computer resources; software test and evaluation (T&E);
risk assessment; operational and technical characteristics; software test
tools and resources

2" A ESTRACT (Contliue on rwers. side if necee.a.y and Identity by block number)

The Software Test and Evaluation Manual is a three volume reference set
that provides checklists and guidance to Department of Defense components in
the area of software test and evaluation for '"jor Defense system acquisitions.
These manuals are aimed at improving the test and evaluation of major system.
through improved acquisition management and risk reduction procedures.

This manual addresses the structuring, planning, conduct, and evaluation
of software tests throughout the acquisition process. Volume II is intended

(continued - over)
DD "OR 1473 EDITION OF' I NOV 61 IS OBSOLETEJSAN 73

C SN
010CTT1A- 6D0GE-(O11I iinDaa EneroSECURITY CL.ASSIFICATION OF' THiS PACE (fWhen Data ltee

unclassified
bkiUW1YTY CLASSIFICATION Of THIS PAogru~m, Date 2019-0

20.
for use by the Service Headquarters, Development Commands, Program Offices
and Contractors, Development Test Agencies, and Operational Test Agencies.

unclassified
SECURITY CLASSIFIC.ATION OF THIS PAGE'ft*n Data Entered)

a!

Preface

The Software Test and Evaluation Manual is a three volume
refirence set that provides checklists and guidance to
Department of Defense components in the area of software test
and evaluation for major Defense system acquisitions. These
manuals are aimed at improving the test and evaluation of major
systems through improved acquisition management and risk
reduction procedures.

Volume I, Guidelines for the Treatment of Software in Test
and Evaluation Master Plans, is devoted to providing consistent
guidelines for the preparation and evaluation of Test and
Evaluation Master Plans (TEMPs) for major software intensive
systems containing mission critical computer resources. It
consists of a checklist i.e., a series of questions that are
keyed to the major paragraphs of a TEMP, and an accompanying set
of explanatory notes that provide brief commentaries on the
questions and the significance of the possible responses to
them.

Volume II, Guidelines for Software Test and Evaluation in
the Department of Defense. addresses the structuring, planning,
conduct, and evaluation of software tests throughout the
acquisition process. Volume II is intended for use by the
Service Headquarters, Development Commands, Progr4;aa Offices *tnd
Contractors, Development Test Agencies, and Operational Test
Agencies.

Volume III, Good Examples of Software Testing in the
Department of Defense, is based on major programs which have
benefited from many of the principles advocated by and detailed
in Volumes I and II of this set. In particular, Volume 1II
summarizes sample statements of work and contract text, program
management hints, and other experience which has been derived
from exemplary software testing efforts.

Tabl.e of Contents

1. Introduction

2. Risk Assessment 5
2.1 Identifying the Role of Software In the System 6
2.2 Assessing the Risks of Software Implemented Functions. . 15

3. Operational and Technical Characteristics* . .*. 21
3.1 Determining Software Contribution to Required

Characteristics. .. a * 22
3.2 Identifying Critical Software Test and Evaluation

Issues a * 27

3.3 Determining Software Specification and Demonstration
Milestones . 41

4. Management and Schedules 0 * * * . 49
4.1 Identifying Software Test and Evaluation Organizations . 49
4.2 Balancing Test and Evaluation Activities .*. 52
4.3 Sharing Information between Organizations. 57
4.4 Scheduling Software-Related Events .0 * e * a . *. 59
4.5 Utilizing Technology as a Management Aid . .*. 61

5. Planning and Reporting * . .. 63
5.1 Understanding the Test Planning Process * 65
5.2 Planning for the Demonstration of Software

Characteristics . .0. 69
5.3 Reporting Test Results 94

6. Software Test Tools and Resources. 103
6.1 Specifying Requirements for Automated Support. 105
6.2 Determining Tool Availability. * 110
6.3 Assessing the Risk of Using Selected Test Tools. . . . 112

Appendix A List of Acronyms 115

Appendix B References 0 *. 117

Appernaix C Department of Defense Directives and Standards. 119

Appendix D Points of Contact *. 121

Figures

Figure 2.1-1 System Classification in terms of Software
Importance. . a a a a . . * a . . 7

Figure 2.1-2 A Mission/function Matrix14

Figure 3.2-1 An Interoperability Requirement 31
Figure 3.3-1 Acquisition as a Cyclic Process 42
Figure 3.3-2 The Software Maturity Matrix. 43
Figure S.",-1 Relative Coat of Error Correction 64
Figure 5.2-1 Functions to System Requirements TraceabilityMatrix . . 0 4. 0 6 0 0 0 *.- 0 74
Figure 5.2-2 System to Software Requirements Traceability

Matrix , * 77

Figure 5.2-3 Software Requirements to*Top*Level'Design
Componentv Traceability Matrix 79

Figure 5.2-4 Software Top Level to Detailed Design
Components Traceability Matrix . . .81

Figure 5.2-5 Subsystem M Implementing Function F 90
Figure 5.3-1 Reliability Incident Classification 97
Figure 5.3-2 Downtime Classification * . a ..e. 100
Figure 5.3-3 Software Examples 101

Tables

Table 2.1-1 Percentage of Finctions Supporting Mission Area
that Require Software . . . s . . * .. . *,. * 12

Table 2.2-1: Relationship between Operational Suitability
Definition and System/Software Quality Factors. 18

Table 3.1-1 Quality Factors for Operational Characteristics. 26
Table 3.1-2 Quality Factors for Technical Characteristics. . 28
Table 4.1-1 Organizational Test and Evaluation

Responsibilities . a 50
Table 4.2-1 Scope of Test Activities 9 * 6 * 55

CHAP'TER 1

INTRODUCTION

The effectiveness of military missions depends oa computer
technology. As force multipliers, mechanism@ for rapidly
responding to changing threats, or tools for extending the data
processing captbilities of individuals, computers -- and the
joftware that controls them -- must function properly or else
mission objectiies are endangered. By virtually any measure of
importance, software technology has become the critical risk
factor in major Defense systems. The principal role of test and
evaluation in the acquisition process is to reduce risk -- to
evaluate the extent to which a given Defense system can be
relied upon to fulfill its mission objectives in times of need.
This manual explains in basic terms how to construct and carry
out a software test and evaluation program.

Why a separate manual for software test and evaluation? In
the first place, there are management and engineering imbalances
between software and hardware that can only be rectified by
specifying how effective test and evaluation of software is
planned, carried out and evaluated. As long ago as 1974. a
Defense Science Board Task Force studied these imbalances and
concluded: "Whereas the hardware development was. .. monitored.
tested and regularly evaluated, the software development was
not." By 1982. the situation prompted the Secretary of Defense
to direct the Military Services to "...give priority to the
development of tools and techniques for testing of embedded
computers and software." He further directed that "Testing of
software should achieve a balanced risk with the hardware."

Another reason for writing auch & manual is that it fills a
gap between system level guidelines and technical textbook
descriptions of software testing methodologies. Many
acquisition managers are not software engineers. They have
asked for an accurate but non-technical handbook that tells them
where to start and how to tell whether or not they've left
anything out. Many software engineers. on the other hand, have
little experience with the structured Department of Defense
acquisition process. They have asked for clear indications of
how software technology fits into the overall Pystem
devel opment.

II

Chapter 1: Introduction

The goal of these guidelines is to improve the test and
evaluation of major systems through improved software
acquisition management and risk reduction procedures. This
manual is intended for use by all those in the acquisition
community who are concerned with the risks of developing major
systems that contain software. Thus. the primary audience
consists of:

Service Headquarters.
Development Commands.
Program Offices and their supporting cottractors,
Development Test Agencies. and
Operational Test Agencies.

It may also be of interest to Software Support Agencies and
individuals within User Commands that become involved in
requirements definition and evaluations prior to a new system's
fielding.

The manual is structured to provide increasingly detailed
discussions of software testing concerns that may arise at
various decision-making levels in an acquisition. Basic
definitions are reviewed and principles of test planning and
evaluation are illustrated with a number of examples. These
lead the reader to specific test methodologies and technologies
as well as suggestions for where to find help and other
resources. The reader should review the contents of this manual
during the initial system planning stages for new acquisitions.
This should help avoid some common pitfalls, such as structuring
an acquisition that neglects software or delays decisions
concerning software resources until time constraints make a
progressive, systematic approach to software testing impossible
to implement.

After an initial review, this document can serve as a
reference manuel answering questions concerning software test
management, m>-'odologies, and issues.

This manual and its companion volume "Guidelines for the
Treatment of Software in Test and Evaluation Master Plans" have
been designed to present a complete approach to software test
and evaluation. These principles are consistent with existing
Department of Defense policy and guidance as well as current
Service regulations and standards. Furthermore. the testing
process outlined in this three volumc Software Test and
Evaluation Manual has been routinely applied to major recent
weapor systemr acqu-u*iticna.

" "•- • I i ' - , ,

Chapter 1: Introduction

Despite its *How To..." appearance, this manual has some
limitations. First, the manual does noz adopt or sUggest a
cookbook approach to the software testing problem. Even when
the reader makes a serious attempt to apply the principles
outlined here. there in much left to be done. The bulk of the
engineering analyses that are necessary for effective testing
axe highly specific to the system being developed, and no
"generic" software methodologies can replate them. Second.
rather than attempt a completely tutorial style or a completely
technical presentation, this manual stears a middle course.
Readers who have only system level software test and evaluation
concerns as might be embodied in a Test and Evaluation Master
Plan may rely on Volume I of this manual. Less experienced
readers will find portions of this volume somewhat demanding.
For those readers, a number of textbooks and other tutorial
materials are available elsewhere. Finally. there are
exceptions to the general guidelines presented here. The reader
should not be frustrated if the approaches which are advocated
in the remaining chapters do not apply intact to his or her
specific problem. Specializing the generic approaches to the
technologies or acquisition strategies requires engineering
judgement and skill that a manual such as this can never
replace. In such cases, the reader should be guided by the
spirit and intent of the entire test and evaluation program.

The first step in applying- sound software testing practices
to system acquisitions is to determine the amount of software
testing that is required -- that is. the extent to which
software is a "risk driverw for the system as a whole. Chapter
2. Risk Assessment. outlines an approach for determining the
extent to which a system is dependent upon software and the
degree to which the system risk is inflated by software. It
includes criteria for determining the extent to which a system
contains mission critical computer resources or is software
inten. ive. Risks resulting from operational requirements are
analyzed in tarms of both system level and software level
requirements.

The next step in constructing an effective testing program
is to define the specific goals or objectives of the test or
test phase. Charter 3. Operational and Technical
Characteristics, provides a detailed treatment of the process
of: (1) i.dentifying thresholds for the software's required
contribution to system characteristic&. (2) identifying
associated test and evaluation issues. L.n? (3) measuring
progress in the context oi the system acquisition. Included are
testable definitionr for softwarc quality factors, as well as
rvpical critical test and evaluatior issuer that way ot
associated with software characteristics. Finally, the use of a
Software Maturity Matrix to support "at-a-glance" information
validity assessments during system/software reviews is
discussed.

. . . - .. .-

Chapter 1: Introduction

Chapter 4. Management and Schedules. includes the basic
elements necessary fo'r understanding and controlling the
horizontal and vertical information flow associated with any
major system acquisition. It provides an overview of the
organizations normally involved in each acquisition and their
roles as defined by appropriate policy documents. It also
describes the variety of testing activities that contribute to a
system's risk reduction and provides guidelines for their
selection when investigating specific operational or technical
characteristics. Finally. mechanisms for the management of
information and scheduling of software-related test events are
discussed.

The conduct of a software test in dependent on the test
plan that guides the test. The utility of test results. on the
other hand. depends on reporting them accurately end
meaningfully. Chapter 5, Planning and Reporting, provides a
roadmap for constructing effective software test plans at all
levels, beginning with the Test and Evaluation Master Plan and
continuing with the treatment of the DoD-STD-2167 test planning
documents. The guiding software testing policy of Department of
Defense Directive 5000.3 introduces the process of determining
test objectives associated with critical test and evaluation
issues, and then selecting appropriatA test approaches for the
test objectives. Reporting of test results and assessing the
software contribution to system capabilities is also discussed.

Chapter 6. Software Test Tools and Resources, describes
requirements setting procedures for software testing tools and
methods for determining tool availability. Finally, options for
building on organizational software test capability are
presented along with an analysis of the associated risks.

This document is the second of a three volume set entitled
the Software Test and Evaluation Manual. It has been prepared
by the Software Test and Evaluation Project sponsored by the
Deputy Undersecretary of Defense for Test and Evaluation
(DU SD(TME)). Volume I of the set, Guidelines for the Treatment
of Software in Test and Evaluation Master Plans, provides
consistent procedures and criteria, for the preparation and
evaluation of Test and Evaluation Master Plans. Volume III.
Good Examples of Softwore Testing in the Department of Defense,
cites useful practices drawn from major programs which have
benefited from many of the principles advocated by the Software
Test ane Evaluation Project and detailed in Volumes I and 17 of
this set.

4

CHAPTER 2

RISK ASSESSMENT

Risk is an element of uncertainty in the Department of
Defense (DoD) acquisition process. Mathematically. risk is the
probability or likelihood of failing to achieve a specific goal.
In practice. the sources of risk that arise during system
development are too complex to be treated with great
mathematical precision. The goal of successful system
acquisition is the effective management of risk. Test and
evaluation (T&E) is a prime contributor to the process of
assessing risks. T&E is an important and integral part of the
overall job of risk management and the system acquisition
process.

There are three principle kinds of risk that are usually of
interest to decision makers and project management during a
system acquisition:

*technical

* schedule
* budget.

Technical risk is mainly determined by uncertainties in the
engineering process that may keep the system from meeting its
technical specifications or may adversely affect overall system
quality and performance. Schedule risk refers to all of the
factors that may negatively impact the acquisition milestones.
Budget risk refers to all of the factors that may cause
unacceptable breaches of development cost allocations.

Sometimes, acquisition decision makers combine many kinds
of risk into a single factor, called decision risk. Decision
risk is the likelihood that an incorrect decision will adversely
impact the attainment of system mission objectives. An example
of decision risk is the likelihood that a decision to deploy a
given weapon will result in the fielding of a system that is
unsuitable for use by troops in combat. When accurate and
complete T&E has been carried out and clearly reported, the
decision maker has all of the information needed to reduce the
decision risk. This Is a critical step in risk management.

&dL1

Chapter 2: Risk Assessment

Software often reprewente a significant source of risk in
complex systems. Assessin3 software ejvelopment risk through an
effective software T&E prop am is often a key factor in
.¶etermining and ultiLately reducing overall system risks. Priorto assessing the software risk, however, it is necessary to
identify the role that software will play in the system. For
example, in some systems, software implements functions that are
critical to meeting operational objectives. In other systems.
software may represent a significant risk to the development
effort (measured in dollars, for instance) even though it does
not carry out any single function that directly affects system
performance. This chapter outlines an approach for determining
(1) theextent to which the system is dependent upon software
and (2) the degree to which the system risk is inflated by
software.

2.1 Ydentifying the Role of Software in the System

Two kinds of systems present software-related risks of
mejor proportions:

* systems containing mission critical computer resources
(MCCR)

* software intensive systems.

This method of classifying systems is not the only cue, but
it has been particularly useful in making early and accurate
software ,isk assessments. As illustrated by Figure 2.1-1.
systems for which software plays a key role can be either type
described above, or both types. The finer points of such
classifications are less important than the following: if a
system meets any of the criteria described below for MCCR or
software intensive systems, then it is very probable that
software represents a main source of risk during system
development.

Mission Critical Computer Resources

The term "mission critical" when applied to software is
used in both formal and informal senses. In a formal sense, it
means any software that falls under a legal definition of MCCR
and therefore is subje.!: to the highly managed acquisition
process defined by DoD Directive (DoDD) 5000.1, Major System
Acquisitions. When used infurmally, "missior critical" software
simply means software that is essential to the successfu2
performance of misbion objectives, regardless of whether or not
the system as a whole is classified as containing MCCR. If the
system acquisition is managed under the auspices of DoDD 5000.1
or under Service specific policies and guidance, it is best to
treat the software as a missior critical resource.

6

w

0
a-

ULI

LL_ LLJ0

0

0

2:n
cI)n

WV)V

L~j Nw

(f)~ 0

Chapter 2: Risk Assessment

The Warner Amendment, 10 U.S.C. 2315. and Section 908 of
the FY 1982 Defense Autborization Act define MCCR to include
automatic data processing equipment or services whose functions
are:

* Intelligence Systems

* Cryptologic Systems Related to National Security

* Command and Control of Military Forces

* An Integral Part of a Weapons System Ui. e., physically
a part of. dedicated to, or essential in real-time to
performance of the mission of weapon systems; used for
specialized training, diagnostic testing and
maintenance, simulation, or calibration of weapon
systems; or, used for research and development of
weapon systems)

* Critical to the Direct Fulfillment of Military or
Intelligence Missions including logistics systems which
provide direct support to operating forces or provide
direct support to maintenance of weapons systems (e.g.
organic supply, software support facilities for weapon
systems, etc.).

The original intent of these definitions was to exempt
computers associated with weapon or intelligence systems from
the General Services Administration procedures for acquiring
data processing equipment. This was in recognition of the fact
that computers intended for the applications noted above are
frequently different in function, availability, and purpose from
computers intended for business or research data processing.

Software in the systems listed above has potential
importance to the satisfaction of mission essential operational
requirements. In general, there are two types of mission
critical software: application (or operational) software and
support (or non-operational) software. Mission critical
application software implements mission essential operational
requirements. Mission critical support software implements
soft-are engineering functions and is used during the
development and maintenance of the mission critical application
software. When mission critical software exists ir a system,
the test program must be planned, conducted, and evaluated to
ensure that system performance will not be impaired by
improperly designed, implemented, or maintained software..
Requirements for mission critical software can often be
identified very early in the system acquisition process. If
this determination is delayed too long, effective T&E will be
impossible.

Chapter 2: Risk Assessment

Software Intensive Systems

The term "software intensive" is used to describe those
systems in which software presents special sources of risk.
regardless of whether or not the software implements mission
critical functions. If a system does not contain MCCR software,
it may still be software intensive and require a systeratic and
disciplined approach to testing.

Tests For Software Intensiveness

There are a number of tests that will determine whether a
system is software intensive. The following examples will be
discussed below:

* Do software costs dominate the total system development
budget?

* Does the software contribute significantly to the
operational and support costs of the system?

* Are large amounts of software required?

* Is software needed for successful system operation?

* Does the software integrate or interface a number of
systems that must interoperate?

If the answer to any of these questions is "yes", the software
intensive nature of the system gives rise to risks. In the
first three cases, budget and schedule risks are implied. The
latter two cases imply higher technical risks.

Development Cost Estimation

By most estimates, software costs (which are projected to
reach $31.2 Billion for the DoD by 1990) constitute the major
share of system development costs. An often-cited estimate of
the Electronics Industries Association is that more than 80% of
the cost of developing a typical weapon system is devoted to
software development [EIA 84).

Nevertheless, determining the ratio of hardware development
costs to the corresponding costs for software may be difficult
to do in practice. One reason for this is that system
Sacquisition costs are frequently quoted for the entire
acquisition, not just the development phases of the acquisition.
Even though software may represent 80% of the development
budget, the average contribution of software to the total
accisition is less than 10% [Boe 81)1

9

Chapter 2: Risk Assessment

This large difference is due mainly to the fact that total
acquisition budgets include the costs of manufacturing and
testing multiple platform@. Such costs are not generally

P applicable to software. When comparing costs. differences in
the processes used to develop hardware and software must 1,e
considered. Development cost drivers for the hardware portion
of a system are thos* associated with design, tooling, and
production-. where production costs are driven by the number of
systems being produced and -ce cost of materials. Cost drivers
a~sociated with the development of the software portion of a
system are also those of design, tooling. and production. In
this case, however, production costs are negligible once the
first software system is produced. Therefore. when comparing
development costs. it is essential that software development
costs be compared with the appropriate hardware development
costs.

Another concern when estimating the cost of software
development is ensuring that the total complement of system
software is considered as opposed to the application or
operational software alone. Non-operational software that is
crucial if the system is to satisfy mission goals may include
simulatlon, training, and diagnostic software. as well as
support software. The costs associated with the development.
testing, and maintenance of this software must be factored into
the analyses whose purpose is to determine the impact of
software on the system acquisition cost.

Life Cycle Cost Estimation

Sometimes, just estimating acquisition costs is not
sufficient. It is common to move from one phase of a system
acquisition to the next with immatur~e software. Such software
will be brought to a mature state during later. operational,
phases of the system's life cycle. The cost of these activities
(frequently classified as maintenance) does not get charged to
the system's research and development budget. Therefore.
estimating the so-called life cycle costs for the software may
provide a better determination of how software- intensive the
system really is.

As with the development processes, the maintenance
processes also differ for hardware and software. Thus, software
maintenance costs should be derived separately from the
corresponding hardware costs. Hardware maintenance cost drivers
(e.g., availability of spares. logistics delays) are those
associated with production.- Production costs are driven bymaterial costs and the number of systems being maintained or the
number of parts being produced. On the other hand, since
software maintenance accommodates changing requirements and the .correction of errors by redesigning, recoding, and retesting
software components and subsystems, software maintenance costv
are heavily influenced by the costs of re-engineering.

10

Chapter 2: Risk Assucimeut

Furthermore. the support software used during the
development phase may not be available for maintenance
activities. In this case, the life cycle cost estimates must
incorporate the expense of acquiring support software
specifically for use during the maintenance phase.

The Quantity of Software

The sheer amount of software that is required is often a
significant source of risk. It is common to measure the
quantity of software in terms of Source Lines of Code (SLOCs).
Another common measure is the amount of computer memory in bytes
or words taken up by the operational software. The latter
measure, of course, excludes supporting software and may present
a seriously misleading picture of the true magnitude of the
software development effort.

Many studies indicate that software engineers produce SLOCs
at an average rate of 400-800 per month (this average depends on
numerous factors, including the nature of the application and
"the kind of programming language being used) [Boe 81]
Therefore. SLOCs is usually a reasonable estimator of schedule
risk. In addition, most software development cost models also
use the amount of software as the major cost driver. Less
obvious risk factors that are often heavily influenced by the
amount of software include those that reflect operational
parameters. For example, industry wide data indicates a strong
correlation between software size and the number of design flaws
or "bugs" that are in the software. This. in turn. affects
operational reliability.

In some acquisitions, software is acquired Commercially
Off-the-Shelf (COTS). This is especially common in command and
control applications, where many system functions can be
implemented in generic decision support or communications
software packages. The quantity of COTS software in the system
may be a significant source of risk. even though many other
risks are reduced by acquiring the software COTS. For example.
the successful integration of diverse commercial software
packages depends on uniform interfaces. If the software is
acquired from different vendors, the interfaces may be highly
incompatible. These concerns inflate the risk of utilizing COTS
support software as well as COTS application software. Another
example is the maintenance risks associated witb a large number
of commercial packages; this is especially relevant in a
desk-top computer or workstation environment in which
maintenance is normally supplied only through the vendor.
Finally, the failure rate of a collection of independently
developed packages tends to grow as a function of the number of
such software packages in use.

S~11

Chapter 2: Risk Assessment

Critical Software Components

A system is software intensive if its functions depend on
software for its successful implementation. In this case, most
of the technical risk associated with the system is concentrated
on the software. Virtually all systems above the purely
mechanical level that are currently in production, or are being
planned. are software intensive in this sense. According to one
recent study. 702 of the technologies, functions, systems, and
actions identified in the Defense*s long range plans require
software [Red 84]. Many of these systems are not MCCR systems.

Table 2.1-1 contains estimates that can be used as a guide
when assessing whether or not there is significant technical
software risk associated with a new system development. These
parcentages represent the proportion of functions for each
mission area listed that require software for successful
implementation [Red. 84]. For example, a communications function
in a new system is virtually assured of being software
intensive.

A system may. in addition, require software for successful
operation even though no specific mission or functional area is
addressed by the software. Examples include CAD/CAM and support
software development, training and simulation, computer graphics
and human interfaces, and decision support. A system having
functional capabilities in any of these areas, or having
significant interfaces with systems that provide these
capabilities, is probably software intensive.

------ ---
: Command and Control e. . e. . 88% :
: Close Combat. 78% :
: Fire Support 62% :
: Air Defense 89% :
: Intelligence and Electronic Warfare 83% :
: Communications. 1002 :
: Combat Support. Engineer. and Mine Warfare 48% :
: Combat Service Support 382 :
: Army Aviation 822 :
: Strategic Offense 100% :
: Strategic Defense 762 :
: Tactical Air Warfare 63% :

Tactical Reconnaissance 88% :
Electronic Combat 86% :
Datt Base Management 100% :
Date Fusion 100

--- --

Table 2.1-1: Percentage of Functions Supporting Mission Area
that Require Software

12

Chapter 2: Risk Avi.-mssme-t

Finally. it may be significant that tbe software
requirements in a system represent WupgradesW to existing
capabilities. The automation of previously manual functions,
the introduction of new functions to previous software
components, and the redeployment of existing software on new
hardware all constitute significant sources of technical risk
and indicate that the system is software intensive.

Software that Integrates Several Systems

Many systems deiend crucially on the capability to
communicate and interoperate with related systems. The area of
communications interfaces demaids special attention due to the
fact that. with advances in technology, these capabilities are
primarily embedded in software. Communications interfaces can
be standard. Off-the-Shelf (OTS). or custom built. Experience
with standard interfaces which have a specified predetermined
protocol make their use low risk. At the other end of the
spectrum are custom built interfaces and the high risks
associated with attempts to define communications protocols that
link multiple components or systems which are themselves in the
process of being defined. In between these two extremes lie the
OTS interfaces. System development risk is elevated when it is
necessary to tailor OTS interfaces for the task at hand.

Identifying Critical Functions

A critical aspect of carrying out an assessment of
technical risk is relating system functions and the software
components which carry out those functions. The identification
of these functions will form the foundation upon which the
software test program will be built. The mission/function
matrix, which lists the mission goals and objectives and relates
them to system functions is a useful tool for identifying the
critical functions implemented in software. Figure 2.1-2
represents a mission/function matrix for a battle management
system containing computer hardware (H) and software (S)
components. In this figure, an S signifies that the
corresponding function will be implemented in software; an H
indicates that the function will be implemented in hardware; and
an S/H represents the intent to combine software and hardware to
implement the function. Knowing which functions are composed of
software allows the specification of software goals and
thresholds, and the identification of associated software test
issues. Plans for software testing, conduct, and evaluation
revolve around these issues.

13

zN

z
0

z

z I-
o0

y. NI z

z
00

0 LAi

C.).

LaI

z z

0 (n)

Q) Cz

w I~ LJ.Y

w ~ ~Z U, _1 - 0 - -1 r

UI < 0~ LLW~~F~ Q- 00 Du

-,--' -0 -r- C.

Chapter 2t Risk Assessment

The success of a teat program relies on the evaluator's
ability to interpret test results at any point in the
acquisition process in terms of system functions and mission
objectives. If this is to be feasible, a complete tracing of
mission objectives to system functions to hardware/software
components to test cases must exist. The mission/fauction
matrix is the first element of a chain of increasingly detailed
specifications.

2.2 AEsessitg the Risks of Software Implemented Functions

Evaluatioas of major systems prior to deployment are
concerned with determining the systems' operational
effectiveness and suitability. Therefore, system acquisition
risks are those of not satisfying effectiveness and suitability
requirements. At the software level, thiv translates into the
risks associited with failing to satisfy functional or quality
requirements. This section will provide definitions of system
operational effectiveness and suitability and will trace these
definitions to system and software functional, performance, and
quality requirements. The remainder of the section will discuss
the risks associated with the achievement of operational
effectiveness and cuitability goals when the system functions
are implemented in software.

DoD 5000.3-M-1. Test and Evaluation Master Plan Guidelines.
defines operational effectiveness and suitability as follows:

Operational Effectiveness. The overall degree of mission
accomplishment of a system when used by representative
personnel in the -.nvironuent planned or expected for
operational emplcyment of the system considering
organization. -loctzine. tactics, survivability.
vulnerability. aLd threat (including countermeesures and
nclear threats).

azearational Suitability. The degree to which a system can
be satiafactorily placed in fi~ld use, with consideration
givet: to availability, cctpatibility. transportability.
int fx:operability, reliability, wartime usage rates,
maintainaiility, sa~rty, human factors, manpower
supportability, logistic supportability, documentation, and
training requi nements.

15

- + + + + . + IA --- - - . .

Chapter 2: Risk Assessment

Relating Systems Enginaering and Software Development

The achievement of operational effectiveness goals is
dependent upon the spe.ification aLd satisfaction of appropriate
system and software, functional and performance requirements.
The system engineering process is concerned with specifying
system requirements, analysing and refining those requirements.
and finally. allocating the% to subsystems end lower level
components. These components are categorised in terms of their
implementation mediumt hardware or software. Once the
requirements are assigned to components, the component
development activities follow different tracks which are defined
by military and DoD standards. For software, the principal
standard that is applied is DoD-STD-2167. the Defense System
Software Development Standard. This standard is required for
use by all Services for systems which contain mission critical
software. DoD-STD-2167 is based on the assumption that the
system engineering process will produce a System/Segment
Specificatiot (SSS) and, as a minimum, a draft Software
Requiremezts Specification (SRS) as a starting point for the
software development process.

Tracing Operational System Requirements

The system functional and performance requirements
specified in the SSS are designed to satisfy mission essential
operational requirements and, therefore, trace directly to the
DoD 5000.3-14-1 definition of operational effectiveness.
Detailed software functional and performance requirements,
specified in the SRS. support the system functions which have
specified operational effectiveness requirements.

Quality Factor Requirements

Quality fa-tors describe attributes of the system and the
software that are required by the operational and technical
objectives. Accompanying DoD-STD-2167 is a set of data item
descriptions (DIDs) which define the contents and format of all
deliverable documentation, including the SSS and the SRS. The
SSS DID. DI-CMAN-80008. defines the contents of a paragraph for
the specification of quality factor requirements. This DID
provides for the inclusion of the following system level quality
characteristics: availability, portability, reliability,
maintainability, and flexibility and expansion. All of these.
except flexibility and expansion whicirare actually aspectr of
maintainability, trace directly to the Dor 5000.3-M-1 definition
of operational suitability.

16
- - --- ~!

Chapter 2: Risk Assessment

The SRO DID. DI-MCCR-80025, also specifies required
contents fov a quality factors paragraph that is to include
requirements for the following software quality characteristics:
portability, reliability, maintainability, flexibility.
usability. interoperability. correctness, efficiency, integrity.
testability, and reusability.

In Table 2.2-1, the quality characteristics described above
are listed. The I's indicate which of the documents (i.e.. the
DoD 5000.3-N-1 definition of operational suitability, the SSS
quality factors paragraph, or the SRS quality factors paragraph)
reference 6ach quality characteristic. This table can be used
to rapidly distinguish those characteristics that originate in
the system level definition of operational suitability from
those that are primarily software level concerns.

Risk Drivers for Effectiveness and Suitability

The primary risks associated with the achievement of the
operational software's effectiveness goals are determined by the
maturity of the functional area. These risks are naturally
inherited by the software development. If the functions being
implemented in software have been implemented before, then
ignoring other factors, the current software development should
be low risk. If the functions have not been previously
implemented. in either hardware or software, the expected risk of
the software implementation is magnified since the definition of
requirements and design cannot build on past experience. In
this instance, the likelihood of false starts and dead ends
increases significantly. These risks arise more frequently in
new weapon systems due to the rapid growth in operational
effectiveness requirements. These include requirements for
increasing capacity as well as those derived from the necessity
to counter more complex threats. For example, the number of
simultaneous radar tracks required to be identified and stored
has increased by an order of magnitude with each new generation
of air defense systems. This has in turn become a significant
risk driver for these systems.

The risks associated with the achievement of operational
suitability goals are magnified by the failure to support the
specification and measurement of progress with respect to
software quality requirements. Quality requirements can be
allocated to hardware and software according to a method similar
to that used to assign functional requirements to hardware and
software, but not without a consistent set of basic definitions.
Many of the currently advocated definitions for the software
quality factors are only remotely related to the system level
definitions.

17

Chapter 21 Risk Assessment

t a Operational a Quality factors t
t Quality Characteristics i Suitability --------------- t

t a Definition t 338 a SRS I
----------...- - -a-a---- - -- - -- .-- - -------- t -------

a availability I x I I :

c compatibility I 1 : : a
---- a------------------------ a 3 an------------- - - - -- ---------

c correctuasa x 3 a 1 a
-- ----as - ---------a--------n....---- n- - -........ -- --a - :

documentation I 1 : 2 a
-------------------------- eeeeeeeeeeeeeeeeeeeeee eeeeeeee- : -

efficiency I : : t

human factors x 2 3 3
usability x i K a

integrity x a : 1 a
--------------- n-------------n n a ------------- ---- -n---- ---

interoperability : x I : I
- --------n ----------------- : ----n ---- -- . . .--- ----- --------

a logistic supportability t 3 I

: maintainability : I x x K : :
: flezibility • x . I .

expandability : a x
l------------------------------ n--nnn------ a--an-n---. n--n--n.

: manpower supportability x :
*-------------------------------- ------------- ------- -----an n na an n a * - -n-ann

: reliability a x x I : K .
--------------------------- n ------- ------ ----- n- -n a -

* reusability t o : z :

: safety : X : :
-------------- -------------- - --------- -------- --------

: testability : a : X
----------------------------- --------------------- --------

:training requirements x

: transportability : x : a-

portability : x
*-----------------------------a------------- -------- --------a nnnaaaan

wartime usage rates : X

Table 2.2-1: Relationship between Operational Suitability
Definition and System/Software Quality Factors

18

AMILL

Chapter 2: Risk Assessment

Extreme requirements in such areas as reliability often
necessitate the use of new algorithms and design techniques.
Stringent operational suitability requirements for functions
that are implemented in software are very high risk.

Finally, the software engineering technology being employed
and its implementation in the selected support software can
itself be a risk driver for the system software. The compiler
is probably the most critical piece of support software used on
a program. If the compilation process results in either
incorrect or inefficient code, the operational software may not
satisfy operational effectiveness and suitability requirements.
Another kind of support software is automated software testing
tools that provide assurance of correct operational software
iumplementation. An error in such a tool or its underlying
theory could mask an error in the operational software. Related
risks may arise from seemingly unrelated factors. Suppose that
an automated tool is used during the development process to
perform requirements analysis including tracing the requirements
to design and implementation components. and ensuring
con-;Istency between all interfaces. If the tool is proprietary
to the developing organization and not available during the
maintenance of the operational software, the risks associated
with the support of that software as it evolves through its
useful lifetime are increased.

The risks arising from software engineering methodologies
or techniques, especially their impact on the operational
software's effectivenesi and suitability must be examined. When
the technology is presented in the form of an automated tool.
that tool should have been subjected to an .evaluation process to
ensure that its application will. in fact. provide a net benefit
[E&V 84].

19

M

CHAPTER 3

OPERATIONAL AND TECHNICAL CHARACTERISTICS

Whether or not a system can satisfy a set of user needs and
expectations is the major issue to be resolved by T&E. Required
characteristics are the key indicators of a system's achievement
of required capabilities. There are tvo types of required
characteristics that are relevarnt: operational and technical.
Accurate estimation of the operational characteristics allows
the tester to predict the extent to which the final system will
satisfy user needs and expectations. Determining the technical
characteristics indicates the level of engineering quality in
the system. In short. assessing technical characteristics
reveals how well the system is being built, while the
operational characteristics are used to determine whether the
right system is being built.

A basic and fundamental activity of the tester is
participating in the determination of the required
characteristics of the system. System level requirements must
be formulated to provide clear definitions of the required
characteristi-9. This implies, for example, that requirements
be testable,; that is. there should be a set of characteristics
associated with the requirements that are c-apable of being
estimAted by testing. Furthermore, threshold values must be
established to determine minimum acceptable levels of
achievement of required characteristics. Questioning whether or
not the characteristics of the completed system will exceed
threshold values gives rise to critical T&E issues to be
resolved by testing. The effectiveness of the T&E program in
establishing the overall worth of a system is often determined
by how well this requirements setting process is carried out.

When software implements critical funations or otherwise
provides a significant source of risk in the system, the
contribution of the software to the required characteristics
becomes a major factor in determining system worth. The
previous chapter discussed in general terms the risks that are
introduced by the presence of software in the system. This
chapter will provide a more detailed treatment of the process of
identifying thresholds for the software's required contribution
to the system, identifying associated T&E issues, and measuring
progress in the context of the system acquisition.

21

Chapter 3: Operational and Technical Characteristics

3.1 Determining Software Contribution to Required
Characteristics

System requirements and the associated required operational
characteristics are derived from the users' mission needs. The
system requirements and engineering design parameters determine
required technical characteristics. As a matter of engineering
practice, the system-level requirements will be decomposed and
allocated to subsystems. their functions, and ultimately to the
system components. In order to be complete, this allocation
should include both hardware and software components. At the
system level, the test program is jeopardized by a lack of
well-defined requirements. The same is true at the software
level.

The allocation of system requirements begins at the most
general levels in the decision documents and agreements that are
used to manage the system acquisition. The principal document
that drives the test program for a major system is the Test and
Evaluation Master Plan (TEMP) . Its use is directed by DoDD
5000.3. Test and Evaluation, and its format is specified in DoD
5000.3-M-i. It is within the TEMP that the system's operational
and technical characteristics are delineated and related to
specific test issues and objectives. When software is
responsible for achieving the system's objectives, its
contribution to the system operational and technical
characteristics should also be evident in the TEMP.

DoD 5000.3•M-i defines required operational and technical
characteristics as follows:

Required Operational Characteristics. Qualitative and
quantitative system parameters approved by the user that
are primary indicators of a system's capability to
accomplish its mission (operational effectiveness) and to
be supported (operational suitability).

R.efl3ired Technical Characteristics. Quantitative system
parameters approved by the DoD Component that are selected
as primary indicators of technic&l achievement of
engineering thresholds. These might not be direct measures
of, but should always relate to, a system's capability to
perform its required mission function and to be supported.

22

j Chapter 3: operational and Technical Characteristics

Testability in a major concern when defining required
software characteristics. Requirements that make perfect sense
to software developers or even system end-users may not beFsusceptible to measurement or testing. For example, a
characteristic such as "...the effort needed to perform..." is
not testable in any obvious way. Such a definition leaves
unresolved the questions of how effort is to be measured, under
what conditions, and exactly whose effort is being measured. It
is usually easy to rephrase stich definitions as follows: "...the
probability that a typical user will. under specified
conditions, successfully perform..." In this definition the
conditions of the test are more or less clearly defined (typical.
users and specified conditions) and the'measurement criteria are
explicit (a probability estimate derived from the statistical
analysis of test data and events). In situations where more
qualitative characteristics are used, the exact concept of
probabilities can be replaced by less exact measurement
criteria. For example, many measurements can be formulated to
determine the extent to which a set of outcomes satisfies a
previously defined list of criteria.

Thresholds define the minimitm acceptable system performance
required to successfully %3xecute a mission. Despite their
negative connotation (developers and users prefer to view the
system from a more optimis-cic perspective, usually in terms of
goals), threshold values !are very important to the T&E process.
In practice, goals 'can be sacrificed in the face of decrea'sed
budgets, shortened schedules. or unanticipated technical
barriers. Thresholds, ora the other hand cannot be negotiated
away. Falling below an agreed upon threshold value indicates
that one or more mission :objectives will be impaired. Failure
to meet or exceed a ithreshold for a required characteristic
indicates a serious deficiency in the system.

DoD 5000.3-M-1 defines a threshold as follows:

Threshold. A minimum level of performance required at a
point in a system's life cycle such that the threshold at
maturity equals the requirement. Achievement of the
threshold should, support a reasonable prediction that the
system requirement will be met at maturity.

23

Chapter 3: Operational and Technical Characteristics

The identification of threshold values is on integral part
of the process of setting overall system requirements. A
by-product of this process is the establishment of thresholds
for all hardware and software components that a~ffect critical
system capabilities. To the maximum extent possible. the
requirements should "~flow" from the system as a whole to the
system components. A system acquisition is the end result of
identifying a user need to counter a threat and translating that
need statement into a set of mission objectives. However, as
the system matures during engineering development and
production, it may deviate in both capability and quality from
what was originally planned. By defining the expected status of
the system's maturity at key points in the development process@
and comparing the observed maturity of the system with the
predefined expectations, deviations can be identified and
corrected early.

The requirements definition process results in thresholds
for each of the system's required operational and technical
characteristics. System requirements are implemented through
some medium, usually either hardware or software. Thus, the
thresholds set for each required characteristic must be
appropriately translated into a meaningful requirement for the
selected medium. If the capability of interest is implemented
in hardware, the associated thresholds are tranclated into
thresholds for required hardware characte-ristics. If the
-primary implementation medium- is software, suitable thresholds
for required software characteristics must be defined.

Suitable thresholds for required software characteristics
must be the result of a comprehensive decomposition and
allocation program which encompasses the operational
effectiveness and suitability chara~cteristics. as well as the
technical characteristics. One such approach is outlined below.

24

Chapter 3: Operational and Technical Characteristics

L Operational Effectiveness Characteristics

These characteristics are specifically related to missionI objectives and are usually stated in terms of required system
functions or capabilities. In many cases. individual system
functions can be clearly associated with software components or
subsystems. When this is feasible. the appropriate thresholds
for required software operational effectiveness characteristics
are inherited from the system level specification. In more
complex cases. functional system capabilities define data
processing "threads" that cannot be easily associated with a
single software component. In these instances. a formal
approach to allocating effectiveness characteristics and
thresholds to specified software components should be used.
Acceptable approaches involve defining data processing
requirements using a model of the functional behavior, relating
processing threads to overall software requirements, and
carrying out the allocation steps in a systematic way wi.thin the
model. Many of these software requirements definition
methodologies are in common and widespread use [Alf 77. Roo 77.
Tei 77].

'Operational Suitability Characteristics

Table 2.2-1 provides a mapping of the DoD 5000.3-M4-1
operational suitability -factors to system and software level
quality factors. This can be used as 4 starting point when
determining required software operational suitability
characteristics. Each operational suitability characteristic
approved by the user is a potential required software
characteristic. In cases where software terminology differs
from DoD 5000.3-M4-1 terminology. Table 2.2-1 and the definitions
provided in Table 3.1-1 can be used to aid the threshold setting
process. Definitions are also provided for operational
suitability characteristics that are first introduced as
software quality factors. Each of these 3hould be considered
for relevance on a system by system basis.

Once the appropriate software operational suitability
characteristics or quality factors are identified, the threshold
setting process is initiated. It may not be possible to specify
or measure the achievement of quantitative thresholds for these
sof tware characteristics. In such cases, qualitative or
comparative thresholds may suffice. It any event, just as ir.
the setting of thresholds for effectiveness characteristics,
software thresholds should be inherited from the system level
thresholds. As descriDed above, a number a." widely used forma7
software requirements setting methodologies are available to aid
in the allocation of threshold requirements.

25

Chapter 3: Operational and Technical Characteristics

Availability Availability is the probability that the
system will be in an operable and
committable state at the start of a
mission when the mission is called for
at an unknown (random) time.

Integrity Integrity is the probability that the
system will perform without failure and
will protect the system and data from
unauthorized access.

Interoperability Interoperability is the probability that
two or more systems can exchange
information under stated conditions and
use the information that has been
exchanged.

Maintainability Maintainability is the probability that
the system can be restored to a
specified condition within a specified
amount of time.

Reliability Reliability is the probability that the
system will perform as intended under
stated conditions for a specified period
of time.

Usability Usability is the probability that users
can operate the system under specified
conditions without user error given they
have received specified training.

Table 3.1-1: Quality Factors for Operational Characteristics

26

Chapter 3: Operational and Technical Characteristics

j Technical Characteristics

Definitions for generic software technical characteristics
that are £180 commonly referred to as software quality factors
are provided in Table 3.1-2. An with the software operational
suitability characteristics. these may or may not be direct
descendants of system level characteristics. In any case, they
should be considered as a starting point and examined for
inclusion on a system by system basis. Once again the
difficulties *.csociat'~d with specifying and measuring
achievement of quantitative thresholds arise. Many times the
simplest and most effective approach is to define the evaluation
criteria for a given characteristic a's a list of testable
properties that, taken together, satisfy a more general software
requirement. Quantitative thresholds can then be identified by
referring to the extent to which the listed properties have been
satisfied (eg...the system must satisfy 85% of the
criteria..." or "...the current system must satisfy at least the
criteria satisfied by the system it is replacing...").

As a general rule, common engineering practice should
prevail in requirements allocation. However, software
technology does not support quantitative specification and
measurement to the same extent as hardware technology. The lack
of a set of software "laws of physics" has resulted in the
proposal of many controversial techniques for software quality
prediction and measurement. .When considering the* use of

s oftware technology, it must always be remembered that there is
no magic. Suggested techniques that are not accompanied by
convincing evidence of effectiveness should be avoided.

3.2 Identifying Critical Software Test and Evaluation Issues

Once thresholds have been established for required software
operational and technical characteristics, the resulting
critical issues must be identified. These issues are simply the
specific questions that must be answered by a test in order to
assess the value of one or more characteristics. It is these
critical issues that provide the basis for the selection oZ test
objectives and appropriate testing methodologies. The
identification of critical issues allows the concentration of
test resources on areas where the most benefit can be realized.
As stated above, not all required characteristics give rise tc
critical issues. If this were the case# the critical issues
could not be used to prioritize teat objectives and guide the
development of an effective test program.

27

Chapter 3: Operational and Technical Characteristics

Correctness Correctness is the extent to which the
system conforms to its specifications
and standards.

Efficiency Efficiency is the ratio of actual
utilization of the system resources to
optimum utilization.

Expendability Expandability is the extent to which the
system capability or performance can be
increased by enhancing current functions
or adding new functions.

Flexibility Flexibility is the extent to which
system purpose, functions, or data can
be changed to satisfy other specified
requirements..

Pot .bility Portability is the extent to which
system components can be transferred
from one software system environment to
another.

ReusaL.-ity Reusability is the extent to which
system components can be used in other
specified appli-ations.

Testability Testability is the extent to which the
specified systen operatIon and
performance determine the conditions and
criteria for tests.

Table 3.1-2: Quality Factors for Technical Characteristics

28

Chapter 3: Operational and Technical Characteristics

DoD 5000.3-M-1 defines critical issues as follows:

Critical Issues. Those questions relating to a system's
operational.' technical, support or other capability, that
must be answered before the system's overall worth can be
estimated/evaluated and that are of primary impcrtance to
the decision authority in allowing the system to advance to
the next acquisition phase.

Decisions made concerning the rigor and thoroughness of the
test program as implemented for individual characteristics are
based upon the inherent risks associated with achieving the
specified thresholds. The risks of interest during the
identification of critical issues are the same risks discussed
in Chapter 2: tech.iical, schedule, budget, and decision. In
fact, the role of decision risk in the determination of critical
issues is apparent in the DoD 5000.3-M-1 definition.

In practice, the critical T&E issues will be formulated by
analyzing the required software characteristic that is being
demonstrated, the demonstrated maturity of the system at that
point in time. and the extent to which prior issues have been
resolved. At times, the critical issues revolve around a
clearly defined question such as whether or not a certain
program can service all resource demands within a given interval
of time. At other times, the critical issues involve, complex
interactions of components and can only be attacked indirectly.

The following paragraphs will outline considerations that
should be taken into acc int when identifying critical software
T&E issues that might be associated with operational suitability
and technical characteristics. These questions tend to be more
generic and susceptible to general discussion than the
corresponding issues for operational effectiveness.
Effectiveness issues tend to involve questioning specific
aspects of system function. Nevertheless. the questions
formulated below should be a model for all types of critical T&E
issues.

The process of determining the specific questions of
interest with respect to a given characteristic is one of
stepwise refinement of the relevant requirements. This process
will be illustrated using the operational, characteristic of
interoperability.

29

Chapter St Operational and Technical Characteristics

Nzaaple: Interoperability

Suppose that System X is being acquired and that one of its
critical operational characteristics is that it be capable of
interoperating with three ezisting systems: System As System 3,
and System C. Further suppose that System X is required to
interoperate with System A via a common data base coupled with
compatible network protocols. Refinement of the requirement for
a common data base may uncover a requirement that the data base
be able to service concurrent requests correctly (e.g.. without
scrambling concurrent transactions, losing requests for service.
or unfairly locking requests from service). Refinement of the
requirement for compatible network protocols may surface a
requirement for compliance with the International Standards
Organization's Open Systems Interconnection (ISO/OSI) Model.
Further refinement of the requirements for concurrency handling
and support of the ISO/OS1 Model could be expected to uncover
additional, more detailed requirements. This stepwise
refinement of the interoperability requirements is depicted in
Figure 3.2-1. The criteria that determine interoperability
between System X and System B. or System X and System C. could
be entirely different than that used for System X when paired
with System A.

The potential critical issues or questions derived from the
interoperability requirements described above for System X and
System A may include:

Is the common data base employed by System X and System A
capable of handling concurrent requests?

Do the network protocols employed by System X and System A
adhere to the ISO/OSI Model?

What percentage of the time are both the common data base
and the network available (i.e.. what percentage of the
time can System X and System A be expected to be capable of
interoperating) ?

Similar questions would arise concerning the capability of
System X to interoperate with System B and Eystem C.
respectively. Any judgement of the worth of System X with
respect to its operational characteristic of interoperability
would require answers to these questions. Thus it car be seer
that as system requirements are refined, each additional
requirement may pose a new issue for investigation. These
issues do not become critical issues. however. unless they lie
on an important decision path.

30

-I-----

Iic

.Q-.

EwE

a _

40 r--

0Jx.

Chapter 3: Operational and Technical Characteristics.

Operational Suitability Issues

The remainder of this section will consist of typical
issues or questions that may arise when the operational
suitability characteristics of Section 3,1 are important to the
system being acquired.

Availability

Software availability measures the likelihood that software
implemented functions will be operational in times of need.
There are two principal design mechanisms for ensuring
availability: fault immunity and failure recovery. Taul'"
immunity in a system guarantees that a function will be
available by ruling out faults -- events that would cause the
function to become inoperable. Failure recovery contributes to
availability by ensuring that the software can transition from
inoperable to operable states (after, for example, an

operational failure has occurred) within specified time
constraints. Among the most important availability detractors
are the faults and failures that may occur in components outside
the direct control of software designers. Contamination by
hardware faults or failures in software systems with which the
given software must interoperate is common and highly available
software designs must provide adequate insulation from these
sources. Another common detractor is the protocol that is
required to bring the software to operational status (i.e.. the
proceduris used to restart or re-initialize the system when
failure recovery mechanisms are not sufficient) . Typical
software availability issues may include:

Do software functions remain available when presented with
a closely spaced series of out-of-range input values?

If a software failure occurs, are its effects limited to
the portion of the code containing the fault? Will the
software recover to a failure-free state?

Do software function3 remain available in the presence of
specified hardware faults?

How are highly available software functions insulated from
operating system failures?

Do "warm" or "cold" start protocols allow transition to
full operational status within specified tolerances?

32

Chapter 3t Operational and Technical Characteristics

Integrity

Integrity measures the likelihood that the software and
associated data are protected from unwanted aicess and
manipulation. The widespread use of computer technology has
provided imew opportunities for unauthorised access of data and
ham thereby increased the risk of compromtise of classified
information. The principal design mechanisam for ensuring
integrity include access control and data protection. Access
control guarantees that system integrity it maintained by only
allowing users to view authorized data and perform approved
operations on that data. Data protection contributes to
integrity by ensuring that the data is only received from
expected sources. can only be interpreted by intended recipients
and in. in fact, valid and consistent. Among the most important
integrity detractors are trusted system components and
multiplexed resources. System components that are trusted
without investigation present, by definition, opportunities for
compromise. Multiplexing -- or any sharing of resources --

allows multiple potential avenues for entry into the system.
Another common detractor from system integrity is data
corruption (i.e.. the possibility that data may be
unintentionally damaged or destroyed). Typical integrity issues
may include:

Does; the system password management protocol reduce the
possibility of system-access by unauthorized persons?

Is data "time-stamped" so that it can be validated prior to
processing?

Does the software provide for controlled access to data and
functions when requests can originate from multiple
external sources?

Has evidence of trustworthiness been examined for those
system components that have a trusted status?

Is data checked prior to storage or processing to make sure
that it has not been altered by transmission over a noisy
communications channel?

33

Chapter 31 Operational and Technical Characteristics

Maintainability

Software maintainability measures the likelihood that the
software can be placed in an operational state when needed.
This includes both the restoration of an inopeTable function or
capability (e.g.. by pushing a "restart" button) and
re-engineering of the software (e.g.. to fix an error or to add
a new capability)* as appropriate. Software maintainability is
greatly influerced by the software design and development
process, and the capabilities existing in the maintenance depot.
Maintainability is enhanced by software designs that build
restore/restart capabilities into the system. The ease with
which the software can be re-engineered is influenced by the
original software development process. Software that is built
using modern software engineering techniques lends itself to
easier modification. Usually this kind of software maintenance
is carried out at a Software Support Agency (SSA) facility. The
SSA contributes to the software's maintainability to the extent
that it supplies an adequate support environment and qualified
personnel. Invariably, the maintainability of the software is
limited by the operational environment's distance from the SSA
and the logistic downtime that is required to recompile or
restart the system. When on-site support is unavailable for the
software, time delays associated with electronic communications
or the physical transport of magnetic tapes place a lower bound
on the minimum amount of time necessary to complete a
maintenance action requiring software modification. Typical
software maintainability issues may include:

Does the system include capabilities (e.g.. cold and warm
start functions) such that it can be restored to an
operational condition from an inoperable state in the
required amount of time?

Has the software been built using modular design
techniques, accepted coding standards, and modern
documentation practices?

Does the maintenance environment include the necessary
compilation systems, testing tools, and documentation/
management capabilities to allow software changes to be
accomplished within the maintainability time constraints?

Do the software maintenance personnel have the proper
training with respect to the application, software
engineering, and the implementation language to allow the
location and correction of an error within available time?

Can the modified software be delivered to the operational
system to allow its installation in the required amount of
time?

If necessary, can the system be restored to an operational
state without taking it offline?

34

, -.-&-- -& - - -

Chapter 3: Operational and Technical Characteristics

* Reliability

A common error made when aef ining system reliability
requirements' is that of failing to consider the software's

~ ifimpact. If software is responsible for providing critical
system functions. then the reliability of the software plays an
important role in the overall system reliability. Sof twa~re
reliability measures the likelihood that software will perform
as intended when called upon. The primary method of ensuring
reliability is that of ensuring correctness of the software.
Though the two characteristics are not equivalent. correctness
is a great contributor to software reliability. Detractors from
software reliability include the occurrence of any failure. that
affect software performance. This includes failures originating
in the components of interest. other software components, and
the hardware. As is the case with availability, contamination
by hardware iaults or failures in other portions of the software
is8 common. If software is to satisfy extreme reliability
requirements, its design must provide adequate insulation from
thece sources. Typical software reliability issues may include:

Has every software instruction been successfully exercised
by some test case?

If a software failure occurs, are its effects limited to
the portion of the code containing the fault?

Does the 'software' perform as intended in the presence of
operating system failures?

Does the software perform ah; intended in the presence of
specified hardware faults?

Usab ility

Usability measures the likelihood that users can operate
the systo-m without error after specif ied training. Three
principal determinants of system usability include the human
factors considerations built into the software, the design of
the hardware, and the qualities of the user documentation.
Software human factors concentrate on the timely and consistent
presentation of understandable information. Hardware designs
must consider ergonomics and user skill levels. U se r
documentation should maximize the ease of i nformation location.
The greatest aetractor frcm system~ usability is the environment
in which this characteristic is most critical -- the operational
environment durincz extreme conditions. The stress introduced by
situations requiring the non-drill use of military systems
(e.g., engagement in battle) can reveal usability problems never
suspected during experiments and evaluations. Typical software
usability issues may include:

35

Chapter 3: Operational and Technical Characteristics

Do error messages guide the user through recovery
procedures when needed?

Is there a roadmap to guide the use of the system
documentation?

Does the system design minimize demands on the human user
during stressful conditions?

Technical Issues

The process of refining requirements related to operational
suitability characteristics to uncover software issues was
illustrated above. If the refinement process is allowed to
proceed to finer levels of detail. at some point the issues
uncovered actually relate to technical software characteristics.
An example of this already exists above: one of the reliability
issues addressed the correctness of the software. Correctness
is one of the technical characteristics presented below. along
with its associated typical issues.

Correctness

Software correctness measures the extent to which the
software conf~orms to i.ts specifications. Thus. correctness is
enhanced by the absence of erro rs, and detracted from by the
presence of errors. Questions associated with the correctness
of a piece of software, therefore, revolve around the process of
determining correctness; in other words, testing. Typical
software correctness issues may include:

Has the software besin subjected to tests designed to reveal
the presence of errors of specific types (e.g.. computation
rrrors. logic errors, data errors)?

Has the software been subjected to tests designed to
demonstrate that errors of specific types are not present?

36

Chapter 3: Operational and Technical Characteristics

Efficiency

Efficiency measures the extent to which system resour~e
utilization approaches optimum utilization. Real-time. embedded
systems are sometimes accompanied by extreme efficiency
requirements. For example. weight limitations may inhibit the
ability to extend processing resources so the efficient use of
available processors and memories is- highly desirable. There
are two principal contributors to the efficiency of a given
implementation: the efficiency of the algorithms employed and
the degree to which efficiency is supported by the
development/maintenance environment. Theoretical analyses are
available for determining the minimum number of processing steps
required to implement solutions to basic mathematical or
engineering problems. Taking advantage of the results of this
field of study can contribute significantly to efficiency.
Efficiency is further enhanced by utilizing support tools that
have themselves been optimized for the efficiency of the
resulting software. The primary detractor from application
efficiency is the overhead resident in the use of underlying
system functions. Every computer operation requires resources
-- the careful design and selection of operators can reduce
demands placed on scarce commodities. Typical sof tware
efficiency issues may include:

Does the software design employ basic utilities and data
man pulation algorithms that, minimize the comb~ined
utilization of scarce system resources (e g. memory.
storage. throughput. 1/0 channels)?

Does the software support environment include optimized
code generators and timing/tuning tools?

Does the software implementation employ operating system
functions in a manner that minimizes the combined
utilization of scarce system resources?

37

Chapter 3: Operational and Technical Characteristics

Expandability and Flexibility

The extended useful lifetimes of major systems developed
and fielded today necessitate the feasibility of modifying the
system capabilities as the usage environment ot threat changes.
Expandability measures the extent to which these modifications
can result in additional or enhanced system capabilities.
Flexibility measures the extent to which the system can be
modified to accommodate changing requirements. Similar to
software maintainability, software expandability and flexibility
are greatly influenced by the software design and development
process, and the capabilities existing in the support
environment. The use of modern software engineering techniques
and the availability of an adequate support environment
contribute to the expandability and flexibility of the software.
These characteristics are further enhanced by designs and
implementations that incorporate robust algorithms into the
system. Limits associated with hardware capabilities and user
workloads are the primary inhibitors of expandability and
flexibility. Typical software expandability and flexibility
issues may include:

Was the software designed and implemented in a modular
fashion? Were programming standards that limit the impact
of changes enforced during the software development?

Is necessary support software and documentation accessible?

Have basic system algorithms been designed to allow eas-
modification?

Can the hardware employed sustain the expected growth
through the addition of boards, peripherals, etc.?

Are users capable of operating the system to take advantage
of additional or changing functionality?

Portability

Portability measures the extent to which components can be
transferred to other systems. This characteristic is usually of
importance to software that is expected to satisfy the needs of
a variety of users who employ a variety of hardware suites, or
software that is expected to outlive its underlying hardware.
In general, the only contributor to a software component's
portability is its implementation. All other system interfaces
or dependencies detract from or inhibit portabilicy. These
include required system libraries. the operating system, the
implementation language, the hardware's instruction set
architecture, and the machine level representations. Thus,
typical software portability issues may include:

Are application interfaces consistent?

38

Chapter 3: Ope-zational and Technical Characteristics

Do necessary math libraries provide adequate accuracy?

Have operating system dependencies been isolated and well
documented?

Is the software written in a portable subset of the
programming language?

Does the software use non-portable tests on collating
sequences or exception flags?

Does a specified series of functions operate within the
required time constraints?

Reusabil'ity

Reusability measures the extent to which components can be
used in other applications. The amount of time, money. and
human resources required to develop software has focused
attention on the potential gains to be realized from employing.
or reusing. individual software components in multiple systems.
The reusability of a software component is enhanced by the use
of modern software engineering techniques And robust algorithms.
as was the case for expandability and Mkexibility. Of special
and unique importance-to the reusability of software is the
availability of 'evidence of the component's behavior under a
v ariety of' conditions and scenarios. As expected, detractors
include all hardware or operating system dependencies. Typical
software reusability issues may include:

Has the component been built to allow its extraction from
the remainder of the system? Is the software modular? Are
interfaces parameterized? Is separate compilation
suppor~ted?

Are test history information and results available to
-provide confidence that the software will perform as
intended in the new environment?

Have basic system algorithms been designed to allow easy
modif ication?

Have hardware and operating syste-n dependencies been
isolated and well documented!

39

Chapter 3: operational and Technical Characteristics

Testability

Testability measures the extent to which proper system
behavior can be determined. The primary factors that influence
the ability to text software are the specification of software
requirements, the organization of software components, and the
availability of appropriate data extraction and reduction tools..
Without traceable. consistent. and adequate software
requirements to determine if software behavior is acceptable.
the testing process is doomed. When the software components are
hierarchically organized and traceable to requirements, software
testing can follow a progressive process where each test builds
on the results of tests that have already been conducted and
analyzed. Building software to include instrumentation or hooks
further supports testab 'ility. Testability is inhibited by the
impact that the testing activity has on system behavior and the
increase in system size and complexity when test capabilities
are added. Typical software testability issues may include:

Is the expected behavior of the software (e.g.. functional
operation and performance) described in an unambiguous
manner?

Can software components or s-ubsystems be examined
independently for testing purposes?

Do cap-abilities exist to control software -execution and
gather all data needed to determine software behavior?

What impact does the execution of test data extraction
routines have on the true software timing profile?

How have increases in the complexity of the software due to
the inclusion of instrumentation been accommodated by the
testing process?

The typical issues described above are intended to suggest
potential critical is&oues. However, any decision concerning
criticality must be made on a system by system basis. Once
critical issues are identified. related test objectives are
def ined and suitable test methodologies are selected as
described in Chapter 5. It should also be noted that critical
issues do not necessarily remain constant throughout the life of
a Bystein acquisition. Threshold~s set for operational and
technical characteristics, as well as their associated risks,
may change. This topic W4ll be addressed in the following
section.

40

Chapter 3: Operational and Technical Characteristics

3.3 Determining Software Specification and Demonstration
Milestones

The previous sections have explained the importance of
setting thresholds for the software operational and technical
characteristics and have provided typical issues that may result
from those characteristics. This section will discuss the
acquisition cycle and the information available to support the
specification and evaluation of thresholds during selected
phases of that cycle. These concepts provide a context that can
be used to judge information received during an acquisition and
to ensure that expectations of progress are realistic.

Figure 3.3-1 depicts the generation of a system as a cyclic
process which begins with the identification of an operational
threat from which mission essential operational requirements are
derived. A variety of concepts may be envisioned for the
accomplishment of the mission objectives, but eventually, a
single conceptual system is selected and described by a set of
system requirements. These requirements are reflected in a
system specification and then partitioned into functional
capabilities for implementation in software and hardware. As
detailed requirements are further refined and amplified, designs
for individual software and hardware components emerge. As the
components are built, tested and integrated, a preproduc 'tion
system evolves and system development testing (DT) is performed.
Following successful comupletion of DT. the preproduction system
is subjected to opera~ional testing (OT). ,Finally, production
quality systems are built and deployed. The cycle begins again
as knowledge, gained from operational experience with the
system, is factored into plans for new systems that may be
developed to counter a future threat.

Another view of this process is presented in the Software
Maturity Matrix (See Figure 3.3-2). This matrix is a tool that
can be utilized by decision makers when assessing software-
related information during the different phases of the
acquisition cycle. DoD 5000.3-M-1 defines a mature system as
f ollows:

Mature__System. A system meeting the minimum essential DoD
Component -approved operational, technical, and quantity
requirements baseline for full and complete fielding of a
weapons system, To be mature, the system must have
achieved its reliability thresholds and be fully maintained
and supported in accordance with the DoD Component's
maintenance concept.

Principal drivers that influence software maturity during a
system acquisition include the extent to which requirements are
known, experience with applying automation to similar
applicationas. completeness' of the software development effort,
and tbe. degree to which the software has been exercised, tested,
and perfected.

41

wta

-4% w

cmLai~

J~aJQ.2

AMC.

1.

- - -

iii Li �
jill iii II

- - -

II fiji! 14'
-

*1 I d ii.111111111 "Ii
5j I Ii
h

-

iA I C,

Ii: I� 'I
A�. U -

p
C) -I--mu-mi-II K --

____ 1; 1
I � ILi�i�wLII'J

***.� L� -� - - -

Chapter 3t Operational and Technical Characteristics

The rows of the Software Maturity Matrix represent
diifering perspectives for observing the evolutionary nature of
software within a system. The columns represent different
phases in time corresponding to the sequence of events visible
to acquisition decision makers. Thus, by reading a single row.
a decision maker can determine whether or not the system is
progressing along the expected path. Similarly. examination of
a single column can reveal whether or not the system has reached
the expected level of maturity for the current pkase.
Descriptions of each of the components of the matrix follow.

Acquisition Milestones

DoD 5000.3-M-1 defines a milestone to be "a major
management decision point in the overall acquisition process of
a major DoD systbm requiring Office of the Secretary of Defense
(OSD) and/or DoD Component program review". Theme decisions
include Milestone 0 which authorizes program initiation.
Milestone I which selects alternative system concepts for
further investigation. Milestone II which represents an
intention to deploy the system selected for development. and
Milestone III which is the production decision.

Acquisition Phases

The total acquisition and deployment cycle is divided into
four acquisition phases:

The Concept Exploration Phase is used to identify and
examine various system and development concepts which will
satisfy the operational mission requirements. including the
role of software within the systems.

During the Demonstration and Validation Phase. system
requirements are validated and the suitability of the
system for engineering development is demonstrated. In
addition. alternate approaches for allocating system
requirements t'o hardware and software are investigated.

Full Scale Development Phase activities include designing.
implementing. testing and integrating the hardware and
software components into a total system.

Finally, the Production and Deployment Phase results in a
specified number of systems being placed in field use and
maintained until retirement.

44

Chapter 31 Operational and Technical Characteristics

System Form/Information Available

At any point in tine, the system exists in some conceptual
or physical form. The available information varies as time
presents more opportunities for analyzing and modifying the
system concept.

During the Concept Exploration Phase, the system is
embodied in the ft7stem Concept Paper (SCP) which describes
the acquisition strategy. including the identification of
concepts to be carried into the Demonstration and
Validation Phase, and reasons for elimination of other
concepts; and establishes thresholds to be met and reviewed
at the next milestone.

During the Demonstration and Validation Phase, the system
exists in the Decision Coordinating Paper/Integrated
Program Summary (DCP/IPS) which supplements, system concept
alternatives and thresholds with planning for system life
cycle management. Although descriptionr of alternative
concepts in the SCP of the Concept Exploration Phase may
include information related to each concept's utilization
of computer resources, the IPS is the first document that
specifically requires the presentation of system computer
resource issues.

During the Full Scale Development Phase, the form of the
system evolves from that of system requirements and
specifications into detailed hardware and software designs
which result in the production of an engineering prototype.
The engineering prototype, as well as each of its
components, is subjected to testing that is sufficient to
justify a production decision.

The system form during the Production and Deployment Phase
is that of a production quality system supplemented with
information concerning operational experience.

Requirements Model

This row of the matrix summarizes the progression of the
system through the acquisition cycle. The system requirements
initially flow ficom mission objectives during the Concept
Exploration Phase. Once a single concept has been selected
during the Demonstration and Validation Phase. the requirements
for the system to be developed can be specified. Full Scale
Development encompasses the refinement of the system
requirements to a level of detail that allows the devel.opment
and integration of each individual component. The *se of the
system during Production and Deployment completes the cycle by
evaluating the system in an operational environment with respect
to the mission goals and logistics strategy.

45

Chapter 3: Operational and Technical Characteristics

Evaluation Scope/Basis for Evaluation

The primary aspects of the system which are examined for
the purpose of evaluation also vary with tine.

During the Concept Exploration Phase. the considerations by
necessity center on mission objectives and the accurate
representation of the threat to be countered. If similar
systems have been developed. evaluations can be made with
respect to methods proven through operational deployment.

During the Demonstration and Validation Phýýve, evaluations
are expanded to consider the planned technical approach
with respect to complexities introduced into the system by
known constraints. For real-time systems. these
complexities will very likely include the impact of timing
constraints on the software portions of the system.

The Pull Scale Development Phase results in an engineering
prototype whose technical characteristics can be thoroughly
tested and evaluated. In addition, operational
characteristics are tested to the maximum extent possible.
The software test program must be founded upon a
systematic, quantitative, and objective approach -which is
employed in a progressive manner. This ensures that
information gained from early low-level tests is factored
into the design of higher-level tests. eventually building
to a software system evaluation prior to the testing of the
completely integrated engineering prototype of the system.
Confidence in evaluation results can be expressed in terms
of the extent and rigor of testing.

The Production and Deployment Phase provides additional
insight into operational characteristics regarding
previously untestable interactions among system.and
software components and the operational environment.

Rec ommendat ions

Guiding principles for each of the acquisition phases
follow.

Efforts during the Concept Exploration Phase must be
concentrated on the determination of realistic thresholds
for required operational and technical characteristics
based upon available mission needs information.

During the Demonstration and Validation Phase, thresholds
must be updated based upon insight gained during the
validation of the requirements and experience with similar
systems. Thresholds must also be specified for softwarep
characteristics based upon previously established limits
for system operational and technical characteristics.

46

Chapter 3: Operational and Technical Characteristics

The Pull Scale Development Phase must incorporate a
progressive and comprehensive software test program that
substantiates the achievement of specified thresholds for
all required characteristics.

The Production and D~ployment Phase offers the first
opportunity to evaluate the system's requirements and
performance in a true operational environment.
Requirements specified during the development of a system
are predictions of an operational need. These predictions
must be updated based upon real need as observed during
system deployment. At this point. tolerances can be
assigned to the thresholds. thereby providing a realistic
basis for the maintenance. modification. or replacement of
the system.

The Software Maturity Matrix can be used to assess system
and software information that is reported throughout the
acquisition process. For example, suppose that at the Milestone
I decision point it is reported that the software for the system
has a reliability of .98. According to the matrix, in general.
only information related to mission objectives is available at
this point in the process. Although reliability thresholds may
have been assigned. it is unlikely that the role of the software
in the system has been thoroughly investigated. It is even less
likely that any software has been developed and tested such that
an achieved reliability figure could be reported. On the other
hand, suppose that evidence revealing the expected operational
reliability of the software is not available at the Milestone
III decision point. If the software test program was properly
structured and executed, this information would be available.
In this case, a thorough review of the software test program may
be in order. By scanning the column of the matrix that
corresponds to the relevant time in a program'sa acquisition, the
context within which to judge software knowledge and status is
easily inferred.

A final point needs to be made concerning thresholds. The
definition provided by DoD 5000.3-M-1 specifically associates
thresholds with time. It embodies the concept that thresholds
change as the system development progresses. These changes are
based on the availability of additional informat~ion about
mission needs and the tech~nical feasibility of specified
requirements.. As the system evolves, the partitioning of
requirements into functional capabilities and the allocation of
responsibilities to hardware and software may advance through
severaL. iterations. Every syster; development activity results:
in information that must be reflected in the current thresholds
for required operational and technical characteristics. This
incorporation of new knowledge must be institutionalized in each
program's development strategy.

47

AWL La...- -

CHAPTER 4

MANAGEMENT AND SCHEDULES

Effective T&E requires a well-managed flow of information.
One component of this flow in vertical and connects developers.
users. and acquisition decision makers. Another component is
horizontal and connects issues and organizations that may be
concerned with different aspects of the system. This chapter
outlines an approach to managing both types of information flow.
The important features of this approach include recognizing the
key participants in the software T&E process and the roles that
they have been given (e.g.. through policy via DoDD 5000.3). and
as-signing spheres of responsibility to each of the participants
to account for the major technical and programmatic risk
elements of the system. An essential aspect of such an
assignment is its focus on developing a realistic management
approach that makes organizational participants responsible for
T&E issues that they can control. Another essential aspect of
this approach to software T&E is the maintenance of independence
in the program. that is. utilizing the efforts of DT, OT.
Quality Assurance (QA). and Independent Verification and
Validation (IV&V) to complement each other while achieving their
respective goals.

4.1 Identifying Software T&B Organizations

Software T&E planning activities begin at the initiation of
system acquisition. Critical to this planning is the early
identification of all program participants and the definition of
their distinct roles and responsibilities. For example. OSD and
Service Headquarters may place requirements on the testing
process. Test activities are primarily performed by the Program
Office, associated contractors, and the Service T&I Agencies.
In addition. other organizations (e.g.. Support Agencies and
User Commands) may provide support during the definition and
execution of specialized tests. Because of their varied
involvements and the needs of iivdividual programs, each group
will organize differently for testing. Table 4.1-1 lists
typical testing responsibilities of organizations directly
involved in system acquisitions. In all cases. these
organizations participate in the testing of the system. and are
either directly or indirectly involved in the testing of the
software components of the system.

49

Chapter 4: Management and Schedules

Organization Responsibility

Deputy Under Secretary Setting of DT&E policy within DoD.
of Defense (T&E) the review of TEMPs. & the provision of
(DUSD(T&E)) technical assessments to the JRMB.

Director, Operational Oversight ýf OT&E within DoD, the
T&E (DOT&E) review of TEMPs, & the provision of OT&E

assessments to the JRMB, Secretary of
Defense, & Congress.

Service Headquarters Review of summary test results for
funding, schedule, & fielding
recommendations.

Development Commands Review of summary test results for
funding. schedule. & performance
decisions.

Program Offices Overall planning & sometimes conduct of
the DT program. Review & approval of
contractor test documents for adherence
to specifications & the contract.
Support of OT.

Contractors Preparation. executioz2, reporting. &
analysis of results of DT.

Development Test Planning, conduct, & reporting on DT
Agencies with respect to satisfying the required

technical performance specifications &
objectives.

Operational Test Planning, conduct, & reporting on all
Agencies OT&E with respect to system operational

effectiveness & suitability. Monitoring,
participation in, & review of the
results of DT&E to obtain information
applicable to OT&E objectives.

Software Support In some cases, IV&V of the software &
Agencies evaluation of the software for

maintainab ility.

User and Training In some cases, support of OT &
Commands evaluations of software usability.

Table 4.1-1: 0 r g an i z a t i on a 1 T e s t a n d Eva 1 u a t i on
Respon, ibilities

50

Chapter 4: Management and Schedules

Once the roles and responsibilities are defined. the
emphasis of the organizing activity shifts to that of
determining the appropriate amount of independence that shall
exist between the participants for the duration of the
acquisition. The benefits derived from organizational
independence include alternate interpretations of users' needs
and attainable solutions. and unbiased portrayals of acquisition
risk. The achievement of organizational independence requires
additional manpower and resources. Decisions concerning the
extent of independence appropriate for a given program must
balance these costs and benefits. This basic tenet of
organizing for testing, independence from development. is also
important for software testing.

DoD-STD-2167 requires that high-level software tests be
planned, conducted. and analyzed by a group that is independent
of the software developers. This approach has been found to be
most successful on past programs ESTE 86) . The degree of
independence strived for during lower-level tests must be
decided for each program based on the risks associated with
various software subsystems and components. Common approaches
for accommodating independence within contractor organizations
include establishing an independent software test group within
the software engineering organization; assigning responsibility
for high-level software test to the system enigineering
organization; establishing a software test group within an
existing independent T&E organization; or assigning.
responsibility for software te'st to an independent QA
organization. 4

The Program Office must allocate staff sufficient for th~e
detailed rev~,ev and approval of contractor software development
and test activities. If objective decisions are to be made and
contracts are to be managed intel'~igently. this staff must have
a working knowledge of software and testing technology. In some
instances, the DT Agencies can provide an independent assessment
of the software development and test activities.

The OT Agencies are requir~d by DoDD 5000.3 tc, be separate
and independent from the Development and User Comma'nds. Thnes
organizations typically test systems and not components oft
systems (including software components) . However, they need to
be aware of the software's intended co~ntribution to the
operational characteristics of the system and the software test
resultr to datL.

51

Chapter 4: Management and Schedules

Finally. an IV&V Agency can provide detailed technical
analyses of software implementations and methodologies. IV&V
techniques are usually applied to augment other testing
activities in areas of high risk. This role may be taken on by
a contractor (other than the development contractor), the SSA.
or the DT or OT Agencies. A benefit of having the SSA perform
the IV&V of the software is that it allows early preparation for
the eventual maintenance of the software. The SSA can also
influence the software design and development to improve its
maintainability.

In addition to independence, the early identification of a
software manager within both the Program Office and the
contractor's development team has been found to be important to
the success of software development and testing [STE 86). The
software manager acts as the focal point on all scftware related
matters and has total responsibility for the software
development. In some cases, independent software test managers
are also designated. Past experience indicates that the
establishment of a separate software manager and associated
staff in the Program Office should occrr at the, initiation of
the program, or at least prior to any maior development contra'ct
awards, to ensure proper focua on software and foftware test
planning [STE 86).

Finally, the use of individuals in participating
organizations that are experienced in similar applications, as
well as software development, has been found to improve the
overall quality c-f the software, product [STE "5]. Although
recFut college gra.luates may be better versed in modern software
technology than e:•isting program personnel, the knowledge of
application-specific problems and opportunities for exploitation
of the technology may be lacking. I-o particular, software
testers vith both software and applications experience possess
greater insight into the attributes that combine to form
exemplary software test procedures and recults. Furthermore,
the maturity gained from involvement with similar systems can
ease the burden of the tester/operator training required to
ensure test reelism. The proportion of high-level experienced
individuals assigned to a program must be appropriate to the
expected complexities.

4.2 Balancing Test and Evaluation Activities

Ultimately, decisions to employ specific types of software
testing techniques must consider boti. the cost of the tfchniques
and the cost of the system failures that they are deLuigned to
prevent. If a system is man-rated and performs a function
directly affecting the defense of the United Stat.s, the cost of
encountering failures is naturally higher than that associated
with office automatiog system failures. Obviously, a program
should be willing to apply bore resources to the testing of
man-rated systems than office automation systems.

52

Chapter 4: Management and Schedules

The goal of software testing is to demonstrate capabilities
and reveal errors that may exist. The cost of an error
remaining undiscovered until the asoftiare ir in operational use
is composed of the cost of the 'system failing to meet its
mission objectives and the cost of repairing the error.

Historically. it has been shovn that the cost of repairing
software errors rises dramatically as the development
progresses. Therefore, the most useful testing strategies or
methcdologies emphasize achievement of test objectives as soon
as necessary software components are available. This does not.
however, obviate the need for OT. True system behavior can only
be ascertained during system employment in an ope'rational
environment using typical operator personnel.

Although all types of software testing techniques share the
common goal of preventing system failures, each (e.g.. DT. OT.
QA. IV&V) has its own distinct objective and set of activities:

The objective of DT is to verify the attainment of technical
performance specifications and supportability. DT
activities include the planning, conduct. and evaluation of
tests at the unit. integration, and software system levels.
Unit tests are concerned with exercising the software and
demonstrating the capabilities of individual components (or
units) . Integration testing is performed on aggregates of
units that hav.e succeasfully completed their unit level
testing and usually emphasizes interface testing and the
composition of system functions. The DT process culminates
in acceptance testing of the total software syste~m (followed
by the rotal system) with respect to defined requirements.
Testers should be involved during early program phases in
the analysis of software requirements to ensure that they
are testable and traceable to individual test cases.

The objective of OT is to determine the effectiveness and
suitability of the system for use in combat by typical
military users. Like DT. principal OT activities are the
planning, conduct, and evaluation of tests. OT differs from
DT in its concentration on mission needs and the functioning
of the system in a typical operational environment. Again.
as for DT. OT will benefit from having testers involved in
the analysis of software requirements to ensure testability
and traceabilty.

The objective of QA is to ensure adherence to standards.
conventions, and requirements, and successful completion of
activities according to specified criteria. QA activitier,
include defining software development standards and
procedures, and monitoring the software process and products
to ensure comapliance.

53

Chapter 4: Management and Schedules

The objective of IV&V is to ensure that the software will
not fail in its operational mission. either by failing to
correctly perform an intended function or by unintentio'nally
performing an undesirable function. Verification activities
examine the product of each phase of software development
(e.g.. requirements analysis. preliminary design. detailed
designs coding) for consistency, completeness. and
traceability to the product of the previous phase.
Validation activities demonstrate the consistency.
completeness. and traceability of the final software product
to, its original requirements.

Table 4.2-1 indicates which of the above types of testing
techniques would normally be expected to contribute to the
evaluation of the software's achievement of thresholds with
respect to the operational and technical characteristics
discussed in Section 3.1. It should be noted that the omission
of an X in a cell of this figure does not indicate the
prohibition of a type of testing technique for the investigation
of a characteristic. In some cases, it may be desirable to
supplement the activities described with additional analyses.

Operational effectiveness characteristics are best
demonstrated through the execution of the software. Although
the true behavior of the software can only be demonstrated in
the actual operational. environment, the conduct of OT, and the
correction of errors found during OT, are too expensive to incur
without some confidence that the software will achieve the
required thresholds. Once this confidence is obtained through
DTO OT is employed to substantiate the DT results. In addition.
for mission critical software or high risk software components,
DT and OT may be supplemented with examination by an IV&V
Agency.

It is o~leo important to demonstrate the operational
suitability char.- cterist ics through OT. With the exception of
maintainability, all of these characteristics can also be
examined by DT. and should be for the reasons noted above. In
instances where stringent requirements have been placed on the
characteristics. IV&V can be applied to reduce the associated
risks. For maintainability, a& dynamic test would consist of
making a specified change to the software while measuring
attributes of interest (e.g., time, cost). -The reason that DT
or the application of IV&V techniques are not advocated for
maintainability evaluations is that the information gained from
dynamic tests it a laboratory setting cannot be used to infer
that the software will be maintainable by the actual SSA
utilizing the true support environment.

54

Chapter 4: Management and Schedules

: DT : OT :' QA : XV&V:

:Operational Effectiveness X : X
Characterin~tics

:Operational Suitability
Characteristics

Availability : X : X :

Integrity : X : X : X X

Interoperability : X : X : X X

Maintainability : : X

Reliability : X : X :: X

Usability : X : X : X

:Technical Characteristics

Correctness : X :

Efficiency :X X

Expandability : X X

Flexibility :

Portability : I X

Reusability :

Testability : X X

Table. 4.2-1: Scope of Test ActivitieE

55

Chapter 4: Management and Schedules

When attainment of an operational suitability characteristic
is deterrined, in part. by adherence to selected atandards or
conventions. QA teuhzir-,es can be used to support the required
avalua 4 nn in a cast effectivc manner. For instance.
programming and documentation standarub u.t u, required to
support maintainability goals. Examples of other standards and
conventions associated with operational s'titability
characteristics include communications protocols that promote
interoperability. accepted keystroke sequences that may enhance
usability, and standard encryption techniques that provide
integrity. The use of QA techniques to examine the
implementation of required standards would *be expected prior to
the conduct of OT.

Whereas the demonstration of the operational characteristics
discussed above ultimately depended upon OT. the demonstration
of technical software characteristics depends upon the results
of DT to the exclusion of all OT. Recall that in Section 3.2
the process of refining operational characteristics to low level
requirements eventually uncovered technical characteristics. As
the system is constructed, the technical characteristics must be
demonstrated as a foundation upon which to achieve the required
operational characteristics.

In this case. DT is supplemented by either QA or IV&V
activities. Once again. QA is employed in instances where the
use of standards or conventions contributes to the achievement
of technical goals. IV&V techniques tend to be more appropriate
when dynamic testing is the primary method of demonstration. In
Table 4.2-1. only QA activities are associated with the
technical characteristics of flexibility and reusability. This
is because it is believed that the use of modern programming
practices enhances the ability to achieve these characteristics
which have gained interest very recently and are not yet well
defined.

In the discussions above, IV&V activities were recommended
to supplement DT and OT when the software was mission critical
or introduced substantial risk to the acquisition. It should be
realized that there is a broad spectrum of IV&V activities which
can be used on a specific program [Orl 84). For instance, if a
minimal IV&V program is desired, its activities should
concentrate on the establishment of a good requirements baseline
and development procedures. In addition, a thorough analysis of
the test program should be conducted. If a uaximal IV&V prograv
is desired, its activities should establish a high level of
confidence in all aspects of the system including the design and
implementation. This would include independent testing as
opposed to independent analysis of the DT program.

56

Chapter 4: Management and Schedules

In addition to DT& OT, QA. and IV&V activities, specialized
analyses may be performed with respect to selected oparational
and technical characteri stics. For example. availability or
reliability models may be used to predict achievement of
characteristic thresholds. Theme models must be validated.
When usability presents critical issues, human factors
experiments may be conducted. When security is of prime
concern, special certifications must be obtained. These
analyses compliment those associated with DT, OT, QA, and IV&V.

There are many opportunities for overlap between DT. OT. QA.
and ZV&V activities. When etriving to minimize redundancy.
those activities; that can be accomplished earliest in the
dlevelopment process should be chosen and assigned to the
organizations which can provide the desired independence as
described in Section 4.1. For example, if a critical
operacional software issue can be addressed during DT as opposed
to OT. the OT Agency should ensure that DT plans and procedures
will produce the necessary data for independent evaluation by OT
personnel.

4.3 Sharing Information between Organizations

To effectively utilize the limited resources available for
testing, information must be shared among the organizations
involved in the test process. Two types of information a.re of.
interest: test planning information and test results. Test
planning information is evaluated to determine the opportunities
for combined testing or elimination of redundant tests. Test
results are assessed to determine progress and the impact of
less than satisfactory results on other planned tests.

The acquisition decision-making hierarchy is organized
around a vertical flow of information, DoDD 5000.3 requires a
software T&E program that provides for "effective sharing of
test results across life cycle phases as well as improved
vertical flow of information within the decision-making
structures ..." In general, test results are summarized as they
are passed from the lower to the higher decision levels of a
program. In other words, producers and consumers of information
operate at different levels of abstraction. To achieve
effective sharing of information. the consumers need to be able
to access information at a level appropriate for their review.
and data at each level of abstraction must be maintained for
future reference. Two requirements need to 'be satisfied to
accomplish information sharing:

57

Chapter 4: Management and Schedules

First. early in the structuring of the program, agreements
munst be reached that allow participating organizations
access to software test information. as needed. These
agreements must accommodate consumer needs for access to
uncompressed information so that independent analyses of
test results may be accomplished. For example. it may be
appropriate for an operational teoter to access the results
of DT but the operational tester must perform his own
analysis and draw his own conclusions. In addition. special
requirements for data collection must be concurred with and
documented. The documents may take the form of memorandums
of agreement between government agencies or contracts
between the program office and industry participants.

Second. physical communications vehicles are needed to allow
the information to be propagated. in a timely manner. An
ideal model of this would be a network of providers and
consumers with access to all information at any level r-f
abstraction. Since this model is not likely to be
implemented on most programs, the users should establish
requirements for the least amount of information necessary
to conduct their activities. while reserving the right to
access more detailed information if the need arises.

A special case of information sharing arises when an IV&V
effort in utilized. The IV&V team must reciive current
information throughout the software development to technic 'ally
evaluate the process and products of the development team. The
IV&V team must also report results of its analyses in a manner
that allows the development tffort to benefit from the findings.
Special timing considerations arise when relevant information
must be transmitted via the program office to maintain the
independence of the parallel efforts of the development and IV&V
teams. Time is required for the program office to examine the
development team' s products and the IV&V reports before relaying
all necessary and appropriate information to each respective
team. It is imperative that arrangements be made very early in
the program life cycle for the timely and efficient sharing of
information between these groups.

If agreements are not reached early in the acquisition
process concerning the information to be shared among
organizations and the responsibilities of each organization with
respect to collecting, processing, and reporting results, there
is a risk that opportunities for data gathering will be
overlooked. In some cases, the only way to recapture the lost
data may be to completely recreate the missed test.

58

Chapter 4: Management and Schedules

4.4 Scheduling Software-Related Ivents

When constructing software development and test schedules,
key software items aunt be available to support software TM
events that culminate in key software subsystem demonstrations.
These M& events must be scheduled to support system level tests
and demonstrations. The scheduling of these basic events munt
also accommodate integration. analysis, and regression testing
requirements. and take into consideration the availability of
personnel. testing tools, and other support items.

It is interesting to note that. in fact. the entire software
development schedule is driven by the system/software test
schedules and therefore should be derived from them. When a new
program is authorized. the date of the availability of its
Initial Operational Capability (IOC) is specified. Following
this, the major events that culminate in a working system are
scheduled to coincide with the specified IOC. These major events
include test events (e.g., key subsystem demounstrations) . In
order for testing to occur on subsystems., for example. the
subsystem's components must have been previously integrated.
Prior to integration, unit testing must occur, and prior to unit
testing the units must have been developed. Thus, the
development schedule is derived from the test schedule. Each
event of the overall schedule is planned to achieve the goal
IOC. From this, it should be obvious that a key element of
successful programs is the. initiation of test planning
activities very early in the development schedule.

The overall program schedule must allow time for the
integration of software components, as well as for the
integration of software and hardware components. Even though
individual software components may have satisfied their unit
testing requirements, time must be allotted for integrating the
components and getting the aggregate to operate satisfactorily
prior to the initiation of integration testing. Likewise, time
must be allocated for the integratior of software and hardware
components prior to scheduled system integration tests.

Another activity that consumes time and should be explicitly
allowed for in test schedules is the analysis of software test
results. The amount of time allotted must include that needed
to obtain test results, which may be observed directly or
received from other organizations that conducted or participated
in the test. Time must also be allotted-for the interpretation
and analysis of the results, the determination of whether or not
the actual test satisfied test plan requirements, and the
production of test reports. Finally. any; dependencies that,
exist between tests must be carefully considered sc that
scheduled start dates of dependent tests allow time for the
required analyses of previous test results.

59

Chapter 4: Management and Schedules

Aegressior. testing is another essential part of software
development. After errors have been located and repaired.
regression testing is performed to ensure that no new erm:ors
have been introduced during the maintenance activity. Sinct, it
is not possible to predict how many errors will exist in each
software component. it is difficult to determine a priori how
mueb time must be allocated for regression testing in the test
schedule. When possible, estimates of appropriate allocaticns
should benefit from past experience with similar systems. Any
schedule that does not provide for regression testing is
suffering from a case of hopeless optimism and should be
rejected.

Tools used to test software are usually software programs
themselves. Thus, the overall program schedule must include
milestones for the acquisition and test of the software test
tools. Important considerations when developing software test
schedules include:

If the necessary software test tools are not available OTS.
insure that the program milestones allow for their
development and test prior to their scheduled use.
Appropriete margins should be incorporated into the test
schedule so that any problems that may arise duriug the tool
development will not impact the testing of the system
software. Contingency plans should be made to allow the
continuance of the overall test program without the newly
developed tools, if needed.

Whether the tool is custom built or OTS, the overall test
schedule should allow for the validation of the tool after
delivery. Since evaluations of the effectiveness and
suitability of the system software may depend heavily on
information provided by the software testing tools, it is
imperative that the tools themselves be carefully tested and
evaluated prior to their use.

Since many software testing tools are large consumers of
computational resources, schedules must allow either time
for the acquisition of additional resources to support the
tools, or adequate time to permit their use within the
confines of existing resources.

Finally, the test schedule must accommodate training and
familiarization of test personne2 with the new tools.

60

Chapter 4t Management and Schedules

In addition to software test tools, the availabi3ity of
other support items, such as system hardware. simulators, or
special test equipment, may also need to be considered when
scheduling test events. The use of these items depends not only
on their availability, but also on their correct performance and
the availability of any personnel needed for their operation.
In some instances, schedules must also provide dedicated system
time to allow potentially destructive software tests to occur.

Finally. the scheduling of software tests must take into
consideration the availability of personnel that will be
necessary to conduct the tests. For example, technicians.
hardware designers and testers, software designers and testers.
and computer operators are some of the personnel that may be
required to conduct a particular software test. Furthermore.
schedules must allow for training personnel with respect to the
system requirements, test requirements, and operation of the new
system.

4.5 Utilizing Technology as a Management Aid

The planning and management of software testing, described
in this chapter, can be aided by the application of appropriate
technology. Automation should be used wherever possible to
enhance the decision making capabilities of managers. The use
of a couputer network to share test information is an example of
modern technology benefiting the decision making process by
allowing access to information that would not otherwise be
available for consideration in the required time frame. OTS
cost estimation and tracking systems, spread sheet packages, and
scheduling and monitoring tools, in many instances, can be used
to increase the effectiveness of management. Automated decision
support systems with accompanying databases and communications
capabilities are also available commercially. Program
management personnel should be aware of available technology and
perform cost-benefit analyses to select management aids for
application to their program.

61

CRAPTIR 5

PLANNING AND RtORTING

Careful and realistic test planning is the key to
successful test programs. By the same token, test reports
document the execution of a test plan and are therefore critical
to the assessments made as a result of T&E. A common factor in
many troublesome acquisition programs is the lack of detailed
and effective test plans and the absence of adequate mechanisms
for reporting test results* On the other hand. early
formulation of test plans and timely reporting of results, allow
designers, managers, and executive decision takers to identify
technical and administrative deviations from program plans and
to respond quickly, often-times saving the program from
expensive corrective measures later on.

Many institutional forces work against detailed software
test planning. Frequent objections include claims that test
plans and reporting requirements increase development costs and
invite micro-management of the development effort. A common
excuse for delaying or ignoring software test plans is that
critical software properties cannot be specified to any useful
degree until late in the acquisition process. These represent
legitimate concerns, but a well-structured test program can
address these issues whale still providing for early and
detailed planning aimed at determining the status of the
software.

In simple economic terms alone, early and complete test
planning aimed at assessing software quality, freedom from
design defect, and overall capability, can repay even large
investments many times over. Figure 5.0-1 shows one way in
which early testing efforts can help reduce overall program
costs [Boe 76). The chart illustrates the incremental
(relative) cost of finding and removing software errors during
the various software life cycle phases, This study indicated
that the increase in the cost of finding and removing errors as
the software moves to operation and maintenance can be as much
as 100 times the corresponding costs during early life cycle
stages. The costs due to testing would have to be
extraordinarily large to offset not only the defect removal
costs, but also the operational costs stemstin- from logistics
delays, lost system functions, and possible mission failure.
Everi ir projects with minimal attention to• testing, as much as
407 of the total software life cycle costs car, represent
testing. The only way to ensure that this investment is
effectively utilized is through test planning and reporting.

63

100-

so-~

to "- C3 " 'I

O00%

to- MEDIAN -TRW SURVEY

RELATIVE
COST

TO
FIX

ERROR 2

0.5-

0.2

0.1 .0 ! 0

REOUIREMENTS DESIGN CODE DEVELOPMENT ACCEPTANCE OPERATIONTEST TEST.

PHASE IN WHICH ERROR DETECTED

I

FIGURE 5.0-1" RELATIVE COST OF ERROR CORRECTION

I

tJ

Chapter 5: Planning and Reporting

5.1 Understanding the Test Planning Process

oEstablishing a test program that requires rigorously adhered
to software test plans and detailed test reports may be resisted

by technical managers. For one thing, test plans represent a
chain of accountability. In particular, each management and
technical level in the programmatic structure of a development
program is responsil-le for a link in a chain of test plans.
This gives managers increased visibility into the status of the
software and requires the specification of success criteria for
the project as a whole. In pootly managed programs, this level
of visibility may indeed be used to micro-manage or otherwise
s-bvert the program organization. In well managed programs,
hcwever, the test plans fit into the project organization. As
will be described below, the planning process can be integrated
with the overall engineering effort. It does not by itself
cause programs to either succeed or fail. However. an effective
test planning process is a powerful instrument that is more
often associated with good program management and technical
success than with unsuccessful programs.

Each acquisition program must eventually answer the question
of how to best include software-specific issues in test plans.
In previous chapters, the problems of identifying software
risks, requirements, and test issues have been treated in some
detail. The test planning process described in thio chapter is
a 1ogical next step: once the software-specific critical T&E
issues have been identified, tests are planned whose objectives
include the resolution of outstanding T&E issues.

The beginning of the chain of test plans is the TEMP
required by DoDD !000.3. This plan is a system level document
that defines and integrates system characteristics, critical
issues, test objectives, responsibilities. resources, and
schedules for T&E. As a matter of policy. the TEMP contains
descriptions of the planned and to-date software T&E effort for
all software components that implement mission critical
functions or represent special sources of risk in the system
acquisition.

Below the levels addressed by the TEMP are test plans for
the increasingly detailed treatment of software. These levels
include tests of software subsystems and coniiguration items.
tests that reflect the status of integrating software components
and functions with each other and with hardware components, and
tests that are applied to the components as well as to the lower
level structures or units frow• which they are composed. At each
of these levels, Liore detailed plans elaborate the plans of the
levels above them in the hierarchy. Results of these tests
combine to summarize the extent to which more general T&E issues
have been resolved by the test. This process is the chief
vehicle for the "vertical f -v of information" required by DoDD
5000.3.

65

Chapter 5: Planning and Reporting

The development, acquisition, and support of MCCR software
is governed by Service requlations for the mavagement of
computer resources in defense systems. In addition..
DoD-STD-2167 ,provides requirements for inclusion in contracts
for the development and acquisition of MCCR software.
DoD-STD-2167 as a product of initiatives sponsored by the Joint
Logistics Commanders and is for use by all Military Services.

As described in Section 2.2, DoD-STD-2167 assumes the
existence of a SSS and draft SRS as a starting point for the
software development process. Although the SSS and SRS are
primarily requirements documents, each includes a section that
defines qualification requirements and therefore contributes to
the test documentation chain. The qualification requirements
section of the SSS contains the testing philosophy and overall
approach to be followed, the assignment of responsibilities for
test performance, requirements and constraints on formal
testing, and a cross reference between system requirements and
qualification methods, levels, and formal test requirements.
The qualification requirements section of the SRS specifies the
methods, techniques, tools, and acceptance tolerance limits
necessary to establir' satisfactory software quality. If
qualification and testing requirements are to be adequately
reflected in the SRS. software test planning must commence in
concert with the specification of the software requirements.

When executing the DoD-STD-2167 test process, information is
created in the form of Software Test Plans (STPs), Software Test
Descriptions (STDs). Software Test Procedures (STPRs), and
Software Test Reports (STRs). Amplifying the SRS test-related
requirements, the STPs set requirements, outline organizations
and responsibilities, specify resources required. and provide
testing schedules. The STDs include input data. expected output
data. and evaluation criteria. The STPRs contair, the step by
step details for test conduct. Finally. the STRs summarize the
test, results, and analysis, and provide recommendations.

The detailed formats of individual test plans are specified
by applicable policy, regulations, or atandards. However, all
test planning documents should contain the following
information.

System Description: a description and identification of the
system, subsystem, or components that are to be tested.
Included in the system description is a brief discussion of
any operational concepts that may affect an evaluation of
the test results.

Test Objectivesi a summary of the technical or operational
characteristics to be demonstrated by the test. Most
important to articulating these objectives are the required
or threshold values for the characteristics and the specific
questions or issues that must be answered in order to
determine whether or not a threshold value is achieved.

66

Chapter 5: Planning and Reporting

Past Testing Summary: an evaluation of past test results
that includes a description of objectives achieved and an
indication of issues left unresolved by previous tests.

Planned Tests: specifications of tests or methodologies to
be applied. These should be in sufficient detail to
indicate that the test objectives will be satisfied.

Programmatic Summaries: information pertaining to test
budgets, schedules, resources, and organizational matters.

At the level of the TEMP, these planning elements deal in
very specific terms with the relationship between the software
and other system components, particularly insofar as the
software's status will affect assessments of overall system
worth. In more detailed test plans, such as those required by
DoD-STD-2167, the issues will have been refined to reflect more
specific aspects of the software's design and construction. At
the still more detailed levels that correspond to test
procedures, the test "methodologies" may. in fact, be detailed
descriptions of test sequences and the expected results that the
tester will use during the conduct of the test.

REgardless of the level of test plan, all of the elements
noted above are essential aspects of the planning documents. By
requiring the test organizat.ion to state its objectives in
conducting the test, to give explicit parameters by which the
system's success or failure is to be judged, and to explain the
manner in which the test supports these, the program is
protected from ad hoc and ineffective testing approaches. A
plan structured in this way also serves as a "contract" that
binds evaluators and developers to observe the same evaluation
and success criteria, so that even over very long periods of
time, consistent management controls can be exercised over the
development effort. Another key aspect of plans organized in
this manner is their ability to evolve. Each such plan is a
"living document" that, in addition to presenting testing which
has not yet been carried out, contains the history of the
development effort as revealed by the testing that has been
conducted at that level. For example, the TEMP is a living
document that is updated annually and addresses the changing
critical issues affecting a major acquisition. It is essential
that test plans reflect the actual program progress.

Finally, the importance of the creation and maintenace of
the complete test documentation chain for a prograr cannot be
overemphasized. In some cases, future events may result in
questions that can be answered by analyzing existing test
results, possibly supplemented with results from limited new
testing. If evidence concerning software behavicr and quality
is improperly recorded or lost, a program cannot benefit from
such economies. In fact, a lack- of proper documentatior mayv
call into question the sufficiency of the total test program.

67

Chapter 5: rlanning and Reporting

The following sections of this chapter provide a roadmap for
constructing effective test plans at all of these levels. Like
all roadmaps. there is a certain amount of detail that cannot be
supplied bere. However, there are five major pitfalls that, if
left undetected, can subvert even the most well-conceived test
plan.

Vague Requirements: While testers do not directly define
operational and technical requirements. they are responsible
for deriving test objectives that address those
requirements. Vague requirements that are not stated in
testable forms, or that do not adequately constrain
developers to design a system that meets user requirements
cannot be used as a basis for effective test planning.

Inappropriate Standards and Contracts: Test resources are
scarce. The resource base can be quickly depleted
responding to contractual requirements and standards that do
rnot support the test objectives for the system. The use of
established standards, even if they are tailored for the
contract, has been found to improve the overall quality of
testing as well as software development [STE 86].

Ad Hoc Methodologies: T&E evaluations are based on
a3sessments of capabilities as described in test reports.
Use of methodologies that are scientifically unsound, not
accepted for use in standard practice, or make use of
unvalidated or undemonstrated techniques and models, reduces
the soundness of the assessments. Successful software
testing of major systems has historically been achieved by
using systematic test approaches for both integration and
requirements verification [STE 86).

Unsharable and Non-Repeatable Results: Without sharable and
repeatable tests, there can be no vertical flow of
information between testers (and evaluators) . In
particular, tests and evaluations of tests at one level in
the hierarchy might have to recreate essential tests
performed at subordinate levels. This can increase the cost
of tests dramatically.

Not Connecting Software to the Rest of the System: All
software tests ultimately support system-level assessments
of suitability and effectiveness. If the software test
program is not defined in concert with the system as a
whole, the final and most important part of the chain of
test plans is not complete.

In escb case the source of each problem described above can be
corrected if it is detected early enough. However, if the
problem is not corrected, it can cause major difficulties, not
only for the test program, but also for the development and
acquisition programe at large.

68

Chapter 5: Planning and Reporting

5.2 Planning for the Demonstration of Software Characteristics

The general DoDD 5000.3 provisions for software testing
include the following:

a. Testing to ensure that system and mission objectives
will not be impaired by improperly designed.
implemented, or maintained software.

b. Articulation of quantitative goals and thresholds for
the required technical and operational characteristics
of software components and subsystems responsible for
carrying out critical mission functions.

c. Testing of software to achieve a balanced risk with the
hardware.

d. Use of systematic, quantitative and objectively
reportable software tests to ensure that subsequent
evaluations represent the status of the software in the
most realistic terms possible.

e. Institutionalization of a progressive approach to
software testing to provide for effective sharing of
test results across life cycle phases as well as
imprQved vertical flow of information within the
decision-making structures of the Military. Service and
OSD levels.

The following subsections describe the major planning activities
that should be carried out to satisfy these criteria.

Relating Test Objectives to Critical T&E Issues

T&E issues are questions that must be answered in order to
determine whether the system possesses a given operational and
technical characteristic. Depending on the type of
characteristic being addressed, the issue will be addressed in
either system level or component level test plans. In many
cases, operational issues are treated in system level plans and
technical issues are reserved for component level plans.
Frequently. however, software T&E issues center on one or more
components regardless of whether or not the issue is technical.
For c e. a computer controlled radar system may have an
operat, .L (effectiveness) requirement to track 1.000 targets.
One issue derived from this requirement may be whether or not
there is a combination of inputs achievable during a given time
interval that causes a software buffer to overflow.

69

Chapter 5: Planning and Reporting

As described in Section 3.3. critical T&I issues are derived
by a decomposition of more global issues. The development of
the issues reflects the design process. It is a "top-down"
process in which each new issue refines the one from which it
descends. *Tests are designed to resolve an issue. Each test
has an explicit objective that relates to a critical T&I issue.
Thus. an issue that questions whether or not a software message
processing system correctly processes all messages of type Ml.
M2. and M3 may be addressed by the following test objective:

Objective A: This test will demonstrate that all messages of
type Ml that contain less than 10 binary digits
(bits). any 26.000 randomly chosen messages of
type M2. and all 5 possible messages that can be
produced by the source of M3-type messages are
processed properly.

Noti-ce that even in this hypothetical example. the
conditions of the test are spelled out in considerable detail.
The problem of whether or not the three kinds of tests chosen
for message types Ml-M3 determine an answer to the corresponding
issue is the central one to be solved in designing the test. if
T&E issues are derived in "top-down" fashion. then test
objectives are designed to respond to the issues in a
"bottom-up", or progressive, way. In other words, objectives
that address technical issues at the -component level must be
designed. and tests must be performed to meet those objectives.
before higher level test objectives can be formulated. A
frequent mistake made in even small-scale software development
efforts is to ignore this hierarchical process; in particular,
to wait until the software is integrated into systems or
subsystems to formulate test objectives. The resulting
objectives tend to be very complex. Furthermore, tracing the
source of unresolved issues tends to be labor-intensive and
time-consuming. On the other hand, test objectives that build
upon each other allow more opportunity to treat T&E issues at
the appropriate level of generality, increasing the overall
manageability of the testing effort.

Suppose that, in the example above, the message processing
software is actually the software driver for the function in an
aircraft heads up display (BUD) processor. This processor
receives signals (message type Ml) from a pointing device (such
as a trakball) that the pilot controls and uses to move an
aiming symbol across the display. Alternatively the processor
receives signals~ from a suite of instruments (message types 142
and 113). A higher level test objective may be:

Objective B: Demonstrate that, when stimulated with signals
generated by a certain simulator, the HUD
processor moves the aiming symbol to the correct
point on the display.

70

Chapter 5: Planning and Reporting

The detailed test objective "A" supports this higher level
objective. However. attemptinS to test to this objective, "DO.
directly can be very damaging to the test planning hierarchy.
For example. without first-resolving the more detailed issue& of
whether the sampling function for the pilot's pointing devices
(at most 10 bits per sample cycle) has been properly
implemented. any attempt to resolve objective "B" leads to tests
of great complexity in which anomalies are very difficult to

Even though there is an explicit relationship between test
objectives and T&E issues, it may not be a direct and obvious
relationship. The most common situation in which this leads to
complexities in designing teats is when the critical TM issue
questions the statistical likelihood of a certain event, but the
test objective (for reasons of cost or technical feasibility)
does not. For example. in support of an operational
requirement, it may be questioned whether or not 98% of all
messages received by a software subsystem are processed with a
certain outcome. In the test objective "A". this problem is
resolved by dividing the messages that can be received into
three types. There are only 5 distinct messages of type M43 so
whether or not they can all be processed correctly can be
determined by exhaustive analysis. Similarly, the physical
properties of the pilot's pointing devices make it impossible
for message Hi to contain more than 10 bits, so by exhaustively
testing all' 1.024 10 bit messages the software's complete
resp'onse to Hi messages can be demonstrated.

Now. exhaustively testing M2-type messages may be
infeasible. But assume these messages have been produced by a
uniformly random source and that the software responds
incorrectly to a given message with a known probability. After
observing 26.000 message-outcome pairs and seeing at least
25.800 processed properly, it may be possible (because of the
way the problem is set up mathematically) to conclude that 99%
of the time all messages will be processed correctly. If that
is the case, then satisfying the test objective indeed
guarantees that 98% of the messages are processed correctly.

As the test objectives become more detailed and highly
specific to the software being tested, statistical
justifications become more abstract and less reliable. In these
cases, the objectives may strive to demonstrate software
capability in "typicaly" cases or in cases that correspond to
especially sensitive "extreme" values. If the objective is to
support a statistical requirement, and if the test designer has
only a qualitative conception of how the typical and extreme
cases relate to the quantitative requirements, then some extra
margins of safety may need to be built into the test. This may
involve, for example, tests whose objective is to demonstrate
that an error of a certain t~ype is not present in -the software
or that certain quality-enhancing measures have been taker in
the software design.

71

Chapter 5t Planning and Reporting

No matter how thorough the test nor how careful the design.
some issues will remain unresolved. Depending on their
criticality. theme irsues may affect system level risk
assessments. Sometimes the system is billowed to proceed along
to the next programmatic acquisition phase even though major
issues are still unresol~ved. This might occur because of an
estimate of the expactad response of the system to a known
threat. It might also occur because the demonstrated test
objectives indicate that the critical issue&. will eventually be
resolved in the mature system (it is, for example. possible to
initiate "reliability growth programs" that involve extensive
redesign and retesting of components or even whole subsystems to
resolve reliability issues). Tn specifying test objectives. it
is helpful to know whether or not these unresolved issues are to
be incorporated into new test objectives. In general. teat
objectives that have not been fully met are left "open' through
one mechanism or another. One possi.bility is to maintain two or
more concurrent tests. conducted by perhaps different
organizations. to resolve issues at differing levels of detail.
In this case. two distinct objectives may be addressed in test
plans directed at entirely different groups of testers. Another
possibility is to note the extent to which an issue has not been
resolved and continue to the next level of the hierarchy. In
this case. test objectives are really an accumulation of the
objectives for the current level and the unmet objectives from
lower levels. Although the management of the test program
becomes more complex.. it~is possible to mix these two
possibilities i*.n the same test program. In all'cases, however.
the updated test plan (in one of the formats described above)
will reflect the demonstrated status of the system as revealed
by the extent to vhieh critical T&E issues have been resolved by
meeting appropriate test objectives.

Constructing a Traceability Matrix: An Example

Thus far. this manual has discussed the determination of
required software operational and technical characteristics, the
identification of software T&E issues, and the definition of
software test objectives. The importance of traceability and
the maintenance of a complete and accurate test documentation
chain has been stressed throughout. Therefore. prior to
describing the testing approaches that can be employed to
satisfy specific software test objectives, the process of
constructing~ a traceability matrix to ai'i in the control of
software testing will be illustrated.

72

Chapter 5: Planning and Reporting

A traceability matrix is & tool that can be used to track
the decomposition of system requirements from the system level
to the implementation level. For each requirement below thej system level. a traceability matrix documents its source in a
higher level specification. It can be used to highlight
instances where requirements; have crept into the system at a
level below the system specification and where requirement. have
been overlooked and not allocated to lower level components at
all. In addition, traceability matrices can be used to reflect
the completeness of planned testing at each level by including
pointers to the test case(s) that will be used to verify each
function. component, or unit. Since the elements of information
that are reported in the traceability matrices become available
as the software development progresses, the traceability
matrices are living documents that grow and evolve in concert

with the software.

The following paragraphs describe the requirements and
components used to construct the sample traceability matrices
depicted in Figures 5.2-1 through 5.2-4. Each entry in a matrix
is an example of a partial requirement, component, or unit.
Also included is an example of an associated test case that
would verify a portion of the entry.

Mission/Function Matrix Requirement

Mission: Carry Out Electronic Communications.

Function: The ZZZ System shall produce target messages in a
format compati-ble with the XXX Communications
System for inclusion in the target track file of
the WWW Command and Control System.

The system mission/function matrix described in Section 2.1
and illustrated in Figure 2.1-2 will be used as the starting
point for this example. Suppose that the system under
development is a Sensor System that interfaces with a
Communications System, and that ultimately the data's
destination is a Command and Control System.

System/Segment Specification Requirement

The following requirement is an excerpt from the
requ'renients of the Target Message Reporting Function of the
Communiications Subsysten of the Sensor System. it has beer
abbrev-,ated to simplify this example and the relevant tracing to
lower levels of the system decomposition (see Figure 5.2-1).

73

IWO
Uw

CK.0)5

<) Z

z~ w

cir

0

V) z

.. 0U)C2

V) o
77- C 0

0 U-Z 0

0 -

z <
_- Q

Chapter 5: Planning and Reporting

3.2.2 Communications Subsystem

3.2.2.z ...

3.2.2.4 Target Message Reporting

The Communications Subsystem of the ZZZ Sensor
System shall format and output messages to the XXX
Communications System for delivery to the WWW
Command and Control System. The Target Message
Reports shall be in the QQQ format and shall be
delivered without aging beyond 15 seconds of track
establishment. The Communications Subsystem shall
retransmit errored messages (as detected and
reported by the XXX Communications System) within
1 second of notification of errored delivery...

The following test case could be used to test the Target
Message Reports aging requirement. It is based on several
assumed requirements of the system. First, the Target Message
Reports have a time field that reflects track establishment.
Second, the report delay is assumed to be a function of system
load. Therefore, the test case is based on measuring throughput
delay from the time of Target Message Report generation to
delivery as a function of system load.

Thi: is, of course, only an example. In a real system,
items such as the following would also play an important role in
the development of an appropriate test: the statistical
properties of system load, other system loading requirements and
priorities, other messages that may be interfering with
delivexies to the Communications System, requirements for
internal error recovery or fault tolerance, the fidelity of
relevant simulations, the extent of available measurement
facilities, and the required accuracy of the test.

4.4.51 Test Case for Target Message Reporting

Simulate or produce the system load as specified
in other sections of the specification, produce
targets for reporting (either through simulation
or other means), and then measure the time delay
from track establishment to delivery to the XXX
Communications System.

75

Chapter 5: Planning and Reporting

Software Requirements

The SSS requirement stated above is decomposed and allocated
to hardware and software components as follows: the message
transmission requirements are allocated to hardware and the
message formatting requirements are allocated to software. In
addition, the response to the retransmission request is
allocated to software. The paragraphs of the software
requirements specification that reflect the allocation of
message processing requirements are included below (see Figure
5.2-2).

3.2.8 Communications Processing

3.2.8.x

3.2.8.3 Target Message Reporting

3.2.8.3.1 Inputs

1) Established Target Track File from Tracking
Function

2) Errored Transmission Indicator from
Communications Processing Function

3.2.8.3.2 Processing

The Target Message Reporting Function shall
maintain a list of Delivered Message Indicators in
the Established Target Track File. This list
shall be used to determine the age of tracks and
ensure that all established tracks are reported
within 15 seconds of establishment. In addition.
this list shall be used to determine which
messages have to be retransmitted due to Errored
Transmission Indicators received from the
Communications Processing Function. The Target
Message Reporting Function shall construct the
Target Message Reports in accordance with
Hil-Std-aaaa, format QQQ.

3.2.8.3.3 Outputs

1) Target Message Reports to Communications
Processing Function

76

a.) i(n aw
UU

LI)0

Uf)

2. r5 mg
z z
<U w.

5 w4-
BY <

U.1-

I)

u-I-i

I--

C)j IP

Chapter 5: Planning and Reporting

The requirement for augmenting the Established Target Track
File implies that this function receives the Target Track File
for transmission to the Communicationd Processing Function. In
most designs, this would act-nally be implemented as a passing of
messages, with the Tracking Function maintaining the Target
Track File and just sending marks or messiages to the Target
Message Reporting Function telling it which messages are to be
transmitted. In addition, this fuaction would return a message
or mark that indicates which messages need to be retried due to
errors. The reason for pointing this out is that functional
requirements don't necessarily reflect the actual design.
Therefore, tests of functional requirements need to be as design
independent as possible.

4.4.137 Test Case for Target Message Reporting Function

Determine the Target Message Reporting Function's
ability to deliver Target Message Reports to the
Communications Processing Function within its
specified time, as well as its ability to react to
a variety of delivery rates for Target Message
Reports. This test case shall verify that Target
Message Reports are delivered within 15 seconds of
establishment by the Tracking Function. The test
case shall also generate tracks marked for output
at various rates based on expected target loading
on the system. In addition, rates of generation
shall be used that stress the function beyond that
specified to determine its ability to handle short
term peak loading effects.

Software Top Level Design Allocation

The SRS requirements have been allocated to a computer
software component named the Target Message Reporting Component
(see Figure 5.2-3). For brevity, all aspects of the software
top level design have not been included. The requirement for
errored message retransmission has been used for the following
example.

3.6.1 Target Message Reporting

3.6.1.1 Inputs

Errored Transmission indicator from Communications
Processing Function (I word. maximur input rate of
I per 100 transmitted messages)

3.6,1.2 Logical Data

3.6.1.3 Interrui.ts

78

m 0

I-,
(n

U, z

z a: U) C.-

W 0 -) 0< w zi:g

00 -j m z C
0 (f~<1. -J

HK Z) L) 0

Cl) ~00 CL cZ .

ILl- LiiCl
5<a

o Lx in

0 w
(r/) 5

GOd

Z:)~
L.L C.

Chapter 5: Planning and Reporting

3.6.1.4 Timing and Sequencing

The Errored Tranimiasuion Indicator shall be
processed within 300 milliseconds of receipt and
shall output a request for retransmission to the
Comanunications Processing Function within 350
milliseconds of completion of processing under
worst case system loading conditions.

3.6.1.5 Processing

3. 6. 1.6 Output

Target Message Retransmission Request to
Communications Processing Function (20 word,
format as defined in Appendix A) .

4.4.218 Test Case for Target Message Reporting Component

This test case shall verify that the Target
Message Reporting Component is capable of
processing the retransmission request within its
allocated time. It will generate Errored
Transmission Indicators at the specified rates and
measure the time of generating the Target Message
Retransmission Request. In addition, the teat
case shall generate Errored Transmission
Indicators at rates exceeding those specified to
determine its ability to process Errored
Transmission Indicators under peal loading
conditions exceeding those specified for the
component . To measure the response time
accurately, the measurements shall be conducted in
an environment replicating or simulating actual
operational conditions.

Software Detail Design Allocation

The software .op level design has been allocated to a set of
units that actually implement the process of responding to
Errored L'ransmission Indicators (see Figure 5.2-4). One of the
units accepts the Errored Transmission Indicator, decodes it,
and initiates the processing by other units in the component.
This control unit would be described in the following type
format.

3.3.4.3.1 Errored Transmission Indicator Control Unit

3.3.4.3.1.1 Inpu-s

1 .1 Local Data

80

- LA.

cc zw jz
0 z

V) 0
F- E-

WV) W o _7

w z

0-0
F- ww)0 o

0 w

0LLJZw

CN'ow

U-,l

w 'I,

0x0

QtQ

Chapter 5: Planning and Reporting

3.3.4.3.1.3 Process Control

3.3.4.3.1.4 Processing

3.3.4.3.1.5 Utilization of other Elements

3.3.4.3.1.6 Limitations

3.3.4.3.1.7 Outputs

4.4.325 Test. Case f or Errored Transmission Indicator
Control Unit

This test case shall verify that the unit properly
decodes the Errored Transmission Indicator and
calls the units that process the message. it
shall consist of pro-Der and erroneous Errored
Transmission Indicat ors. and shall determine
whether the control unit properly queues requests.
calls the correct units. and responds to errored
requests. In addition, the test shall determine
whether or not response to the requests occurs
within the allocated time for the unit.

The traceability matrices illustrated above are essential
tools for the management of the software development and test
process. In addition to assuring completeness and revealing the
introduction of non-required functionality, they can be used
during the maintenance process to esti.mate the impact of
changing or adding requirements. Finally, as shown above. they
can be used to ensure adequate coverage of test objectives with
respect to system and software requirements.

82

Chapter 5: Planning and Reporting

Selecting a Test Approach to Satisfy a Test Objective

In order to satisfy a test objective, a sequence of tests
must be carried out. That is, a series of software executions
must take place. These executions can be scenarios of the real,
integrated system operating in its intended environment, or they

V Ican be single instances of simple program units (such as
subroutines) operating in isolation from all other program
units. The data that stimulates the software in any such test
is referred to as "test data". During OT, the test data for the
software is contained in the overall mission profile data used
to define the test scenarios (e.g., the data defining the
position of the airplane is determined by the actual position of
the airplane during the test, the limits of resolution of any
sensing devices, and the rate at which positional data is
sampled). In laboratory settings, the test data may be supplied
by simulators of the mission profiles. During unit and
integration test phases, the data is supplied by programs or
human testers that generate values for unit parameters, input
variables, and other unresolved data references that the
software may request. In each of these cases, the test data
should be derived according to a specified technique or test
methodology.

The principal requirement for test methodologies is that
they support the corresponding test objectives. In many cases,
the objective wili specify the r&nge of acceptable
methodologies. In other cases, the methodology is selected as a
result of an analysis of the objective and how to best support
it. Two common errors in test planning are to either
overspecify or underspecify the test methodology that supports
the objective. Overspecification occurs when the test designer
jumps directly into the detailed description of test procedures
(e.g.. "...move switch labeled 'BAY 2' to position 'ENABLED',
observe blinking locator symbol at position...") without first
defining the reason that this test supports the corresponding
objective. Underspecification occurs when neither the test
objective nor the test specified in the test plan constrain the
tester to present test data that meets any special technical
criteria. Such ad hoc testing is very difficult to use in a
rigorous justification that the objective has been met. Ad hoc
tests are also not sharable, and so should be avoided for that
reason as well.

Matching methodologies to objectives usually involves
cost-benefit and other tradeoffs. This is also a good
opportunity to assess the realism of the test objectives. For
example, an objective that can only be satisfied by an
exorbitantly expensive test (the cost of which far overshadows
its potential benefits) is probably not realistic and should be
modified. The matching process is, to some extent, controlled
by the degree of confirmation required by an objective. There
are two approaches:

83

Chapter 5: Planning and Reporting

Necessary Conditions: A test methodology represents a
necessary condition on the test if the
only way in which the teut objective can
be satisfied is by the success of the
test methodology. In other words. if
the software fails to satisfy the
conditions of the test, then the test
objective has not been met.

Sufficient Conditions: A sufficient condition is one that
implies the test objective. That is the
test methodology presents a sufficient
condition for the objective if the
success of the methodology means that
the objective has been satisfied.

For example, a certain computer program may have a test
objective to demonstrate that 90% of all inputs are processed
correctly. If there are only 10 possible inputs. then a
sufficient test methodology is to exhaustively test all inputs.
If all are processed properly. then the objective is satisfied.
As an example of necessary condition. suppose that a certain
system has a test objective to demonstrate that the system can
perform in an operational environment for a period of ten hours
with at most 25 failures to perform an essential function. A
necessary condition, then,. is that no sequence of test data to,
the software results in more than 25 mission-essential failuires
of a software function over the same period. A family of
methodologies that frequently are used to provide necessary
conditions are the so-called "coverage" tests. Generally
speaking, test data satisfies a coverage condition if a
proportion of a structural characteristic has been exercised by
the test data. For instance, a specified target identification
algorithm in a software component of an electronic warfare
system may be implemented by a table in which the 10 possible
target types are represented by rows of the table. T1he columns
may represent the 225 distinct sensor configurations that are
possible. An entry in the table represents the action to be
performed when the indicated target is detected and the sensors
are in the selected configuration. If a test objective is to
demonstrate that all targets are correctly acted upon regardless
of the sensor configuration, then it is necessary to
structurally cover all 2,250 target-configuration table entries.
Notice that this may not be sufficient tc guarantee that the
objective is mnet (there may be real-time constraints that cause
correctly ident-fied targets to be processed incorrectly, for
example) H oweve r, if even one of the e nt ri.e of the
target-configuration table is not exercised by test data, then
that specific action may lead to incorrect processing and so the
objective of demonstrating that all target-configuration pairs
lead' to correct actions cannot be niet.

S4

L Chaptar 5: Planning and Reporting

One way of classifying the available systematic testing
approaches is in terms of Test Type (static or dynamic).
Visibility (black-box or white-box). and Life Cycle Phase (early
or late). Static and dynamic test types differ in the extent to
-which software code is actually executed during the conduct of
the test. When utilizing static analysis techniques. the
software is usually not ezecuted: rather, human code readers or
automated analyzers process program text in order to resolve
outstanding issues. Dynamic analysis techniques, on the other
band. depend on code execution for data concerning the1.software's behavior. Black-box and white-boz tests are
distinguished by whether or not internal program at~ucture is
used to define test cases or determine effectiveness of the
tests. In black-box tests, the program is considered to be a
closed system. about which only external input-output behavior
is significant. White-box testing approaches are free to use
all structural information to define the test. Finally, the
details of applying a test approach are heavily influenced by
the life cycle phase.

While it is, in principle, possible to consider all kinds of
tests in this scheme, in practice, certain combinations of test
types, visibility, and life cycle phase seen to work more
effectively. For example, it is common to' find static,
white-box analyses used during very early design phases, but
hardly at all during very late development phases or during
operation and maintenance,

The following is a summary of systematic testing approaches
that are commonly used to support test objectives [DeM 87].

Static Analysis

Static test methods are primarily used during early design
stages to verify the consistency of intermediate engineering or
incomplete software products with prior specifications or other
documents. The nature of static methods makes them ill-suited
for direct-ly addressing operational issues. Nevertheless.
static analysis is the principle tool for deriving early
estimates of whether or not required technical characteristics
are satisfied. Some of these methods simply measure the extent
to which basic engineering standards have been satisfied. Still
others carry out more sophisticated analyses (e.g.. is there
software which cannot be reached by any feasible control path?).

85

Chapter 5: Planning and Reporting

An important class of static methods involves the atructured
"readingn of program instructions. These readings or
walkthroughs can be carried out in a group format (during which
-the group may play an adversarial role) or by a single
programmer. Some major issues that can be resolved with this
technique are the following: (1) Is the design complete? That
is. does every specified Tequirement get successfully addressed
in the design? (2) Is the design consistent with itself as well
as with previous speci~ications and constraints? and. (3) Are
all elements of the design traceable to a specific required
function feature or capability? One difficvlty in relying on
static analysis, particularly those approaches utilizing
subjective evaluations or human readers, is their relative non-
reproducibility. Although such tests can be planned Pnd carried
out to support specific test objectives, test reporting and
sharing of test results may not be possible.

Structural Coverage

A structural coverage test is satisfied if test data can be
supplied that causes the execution of the specified percentage
of the structural features of the software to be executed. A
common structural coverage measure is statement coverage: a K%
statement coverage test is satisfied by any test data that
results in the execution of K% of the basic statements in the
software program. Variations on statement coverage include suc.h
conditions as demonstrating that each executed statement is
necessary. Another structural coverage measure is decision-to-
decision branch coverage. This is a generalization of statement
coverage. In statement coverage testing, a conditional or
branching statement is considered the same as a non-branching
statement: as long as it is executed by the test data, it
contributes to the total coverage score of the test. For many
programs that contain branches, however, the mere execution of a
conditional statement is less significant than exercising all of
the possible outcomes of the conditional. These decision-to-
decision branches must be covered at the specified percentage in
order to pass this kind of test. Coverage of higher level
structural features (e.g., the entries of the target-
configuration table discussed above) may also be specified in e
test plan. While structural coverage terts are seldom used as
sufficient conditionr for a test, they are commonly included in
test plans as necessary tests.

86

Chapter 5: Planning and Reporting

Domain and Path Coverage

It is common to use distinct processing paths in the
software to partition the universe of possible inputs to the
software into "domains". In the case that each processing path
thus selected corresponds to a specified processing thread for
one or more functions, then the distinct domains may also be
interpreted as types of inputs as in the HUD processing example
given above. A frequently useful methodology can be based on
simply specifying the proportion of the total number of paths
that must be covered by the test data. This is not, however, a
simple structural coverage test since these paths can involve
the complex intertwining of structural features (e.g.. the
multiple and interleaved repetition of loops). Like the
structurally-based tests, simple path coverage m2thodologies
tend to be useful in generating necessary but not always
sufficient tests. In some programs, the number of paths is so
large that the proportion of the paths is not meaningful. In
these cases, the "highly likely" paths may be selected for
execution. If these paths correspond to distinct types of
inputs about which statistical frequencies are known, then path
coverage tests may be useful for developing sufficient
conditions on the test objectives.

Frequently, the, domains have a mathematical or geometric
structure that can be exploited. The "domain strategies" use
previously gathered information. ab.out the likelihooa of. certain
kinds of errors involving the definition of domains to generate
tests. When depicted graphically, these tests might specify
that a certain subset of the test points should be selected on
one side of a domain boundary, a second subset on the other, and
at least one test point should fall exactly on the domain
boundary. If such rules guarantee that certain kinds of domain
errors will be revealed (if present) then the domain strategy
may be an effective necessary test.

Another type of path coverage test that is often used to
infer tiat objectives are satisfied is the "symbolic test". In

symbolic testing, a mathematical formula is derived by executing
a certain path or set of paths symbolically. This formula is
then compared to the specified or required properties of the
path. If these are consistent, then the patth represente a
correctly implemented series of processing steps.

87

Chapter St Planning and Reporting

Tests for Computational Errors

Even when statements hav, been executed and domains have
beet selected properly. there are many errors that arise due to
mistaken in desigaing computational steps. A useful test
methodology for detecting computational errors in "data flow
analysis" . This is actually a family of analysis methods that
detect anomalies in tbA handling of data that are indicative of
errors. Data flow analysis will detect, for example, situations
in which a data value is accessed by the software before a
definite value has been assigned to it. Data flow analysis
measures are easily automated and may be included in the
compiler for a modern high order programming language such as
the Ada* language.

A particularly intractable kind of computational error is
one that defeats a test because the test result in
coincidentally the same as a point at which the computation
happens to give correct results (eg.if a test results in
calculating 2x at the point x=1. and the program should have
calculated 2 raised to the power x. the test will not detect the
error). No single computational methodology in sufficient to
detect such errors. As a result. the tester may have to apply a
variety of test methodologies.

Error Coverage

Teats that specify error coverage criteria are passed when
test data are supplied that demonstrate that the given errors do
not occur in the software. If the errors have a relationship to
the test objectives, then error cov.'rage tests are useful
sufficient tests of some kinds of objectives. As a methodology
for ruling out various kinds of errors. at least minimal error
coverage tests are usually necessary.

A common category of error coverage tests are mutation
tests. These are the software version of the single fault
coverage tests frequently used for digital hardware. In
mutation tests, the errors are modeled on a statistical sampling
of the~ errors that the programmers are likely to make. Because
of its statistical basis. mutation testing can be tailored to a
given set of test objectives.

* Ada iE a registered trademarlk of the U. S. Government (Ada
Joint Program3 Of;fice).

Chapter 5t Planning and Reporting

Other error coverage tests (related to mutation) include
variations of path and domain testing in which the selection of
test data for each path and domain is guided by a not of rules
that will reveal certain types of errors if they are present and
the 'error-sensitive test case analysis' and "wa mutation'
methods which provide for fixed test data construction rules
that will uncover the occurrence of specified errore.

Incremental and Non-Incremental Integration Tests

A common objective in integration tests is to demonstrate
the accumulated increase in functionality &*Lined &a software
units are bound together in subsystems and systems. The
performance of the integrated components is specified by
external and functional specifications. Sometimes these
specifications can be hierarchically decomposed and identified
with individual units as shown in-Figure 5.2-5. In this case.
incremental integration tests may provide both necessary and
sufficient test criteria for the stated objectives. These tests
demonstrate the correct implementation of each of the decomposed
subfunctions and then verify that the integrating components
combine the subfunctionu properly.

Frequently. however. the functions specified at the
subsystem level do not have an obvious incremental relationship
to the software units. In this case. a non-incremental, test
sutch as a 'thread test" is needed. In these tests, processing
paths or threads are identified and tests are designed to
support the objectives associated with the threads. The
distincý..ion between incremental and non-incremental tests is
that during incremental tests, higher level tests combine the
tests of their components. During non-incremental tests., on the
other hand. external process descriptions (such as might be
contained in a system verification diagram or software
requirements definition) are used to generate the tests which
might involve the intertwining of several units.

Functional Tests

Functional tests demonstrate the correct implementation of
functional specifications ard requirements. These may be either
operational or technical specifications. While many functional
testing methodologies are specific to the application at hand,
several general concepts recur.

89

CJ

CNI

La.

C,

C\J
LL

LL. U)

Chapter 5: Planning and Reporting

A common goal of functional testing is to stress the
functions. That is, to demonstrate the behavior of the software
when limits and capacities are approached and exceeded. At the
unit level, this may involve selecting tests that correspond to
extreme or "out-of-specS values for unit parameters or input
variables. At the system or subsystem level, the corresponding
stress test may involve test data that saturates a given system
capability. During OT, functional stressing can be demonstrated
by exceeding software system capacities by specified amounts.
While stress testing is seldom sufficient to determine whether
or not objectives have been met, these functional tests are
frequently necessary to exhibit the performance parameter limits
of the system and to exhibit failure modes and effects.

Another useful functional test methodology is "random"
testing. Random tests involve th. selection, generation, or
extraction of test data from a statistical or stochastic source.
During unit testing, the statistical source may be a generator
that samples from a source according to a certain probability
distribution. During integration testing, a simulator may
provide the statistically meaningful frequencies of occurrence
of data values, while during OT. the statistical variations in
the actual mission profiles are the source of randomness. If
the test designer has confidence in his knowledge of the
underlying probability distributions, then random testing can be
used to effectively estimate operational reliabilities and other
statistical parameters. In these instances, random tests are
used as sufficient conditions on the test objectives.

Late Life Cycle Testing

The applicability of systematic test approaches during late
life cycle phases such as operation and maintenance is
determined more by external factors than individual
characteristics of the test approaches. For example, using an
error-based test for in-line testing of software in an
integrated, operational system is usually possible provided that
the necessary instrumentation is available and there ic enough
free processor capacity to support the overhead associated with
the test.

An important class of late life cycle tests is the
regression testing that must be carried out to assess the impact
of software changes. Key issuer of regression tests revolve
around the expense of re-running large numbers of individual
tests. While these concerns are influenced by, project
management strategies. some technical aids are useful. Being
able to assess the impact of program changes requires two-waY
traceability between program text and the bistorical record of
critical T&i issues. Furthermore. errors, failures, and
corrective actions should be reported and tracked to enhance
traceab'l.lity.

91

A

Chapter 5t Planning and Reporting

Tooting Real-Time or Embedded Software

Embedded. real-time and parallel applications often involve
software test issues that require eztra attention. Many of the
methodologies that apply readily to sequential applications
become infeasible in these environments. Often the only
available methodologies require that test objectives be scaled
down. A major source of difficulty in testing software for
these applications is the complexity of interactions between
components. Whereas sequentially organized programs can be
ceasted and test results described by deterministic methods.
parelleliam includes stochastic behavior and multi-threaded
control. The sheer number of possible system states often
frustrates thorough tests of integrated systems. In some cases.
system design can influence the ease of testing (e.g., loosely
coupled parallel systems are easier to test than tightly coupled
ones). The early involvement of testers in the design process
is valuable in steering designers away from inherently
untestable system architectures. In other cases, early testing
of operational aspects of system components can be used in place
of OT objectives for the mystem as a whole.

In many cases, instrumentation also presents special
problems when conducting these and related tests. During early
test phases many properties of the running programs may be
invisible to the tester without instrumenting devices such as
counters that ind.icate which branches and paths have been
executed. During tests of integrated software systems, it
becomes even more difficult to peer into dynamic aspects of the
"software. For example, in the HUD processing application
discussed earlier, the success or failure of a software function
may depend on the rate at which a certain software buffer fills
and empties. During unit testing this buffer may be completely
visible as an array or some other data structure in a given
unit. In an integrated system running on an operational
hardware set, it is usually very hard to directly observe such
dynamic aspects of software performance without instruments that
are tailored to the task. The alternatives are generally
labor-intensive and are frequently not cost-effective to
implement. For example, a common way of gaining visibility into
such detailed features of the software ir to interrupt an OT so
that the entire contents of the computer's memory can be
"dumped" to magnetic tape or disk. ThiE dump is then analyzed
to extract information about the state of the software. Clearly
this procedure cannot be used very ofter. during the course of E
test. On the other hand, it is frequently possible to place
"software hooks" into delivered software so that hardware and
software instruments can be. conveniently attached durinc,
testing. If, for example, the message format of a
communications program is likely to become a critical T&E issue,
then it may be desirable to require the software developer to
provide a software switch that. in test mode, causes a given
message to be decomposed into 'a standard representation and
output to a designated I/0 port.

92

Chapter 5: Planning and Repbrting

'I It has been found that, when instrumentation requirements
are recognized early in a program, included in test plans, and
included in the software requirements specifications, the
quality of testing of major weapon syutems is improved ESTE 863.

Determining the Appropriate Level of Test

Most systematic test methodologies involve the selection of
a level to which the test can be carried out. For example, in
structural coverage methods, the level of the test is an
explicit parameter: a 100l coverage of statements is a more
thorough test than a 50X coverage. In specifying the level to
which a test is carried out, the test plan should strive to
resolve the relevant T&E issue with an appropriate margin of
safety. In general, the higher the level of the test, the
higher its cost. The lover levels of the same test have
generally lower fidelity. These tradeoffs should appear as part
of the explicit analysis during test planning.

It is frequently the case that some of the costs of
selecting very high levels for a test can be offset by using a
higher degree of capitalization for the test; that is, by using
more and more powerful computers, reusable hardware and software
instrumentation, or other capital expenses, the direct cost of
which can be amortized across several tests.

Using DT&E to Demonstrate Operational Characteristics

There is not always a single, synchronized schedule for
demonstrating test objectives. In particular, many T&E issues
that involve operational characteriatics can be demonstrated
relatively early in the software development process. Since
early demonstrations are almost always desirable, these
opportunities should be actively sought out.

In some programs, this has resulted in the construction of
nearly-operational integration test facilities for use during
DT&E. Simulators of operational scenarios and stimulators which
provide software inputs in place of external sensors and other
devices can, of course, be used in these environments to reduce
the costs or risks to life that would be incurred in an OT.
Such facilities are particularly useful in demonstrating
properties of the man-machine interface and measuring other
human factors of the dtsign. Software interfaces are usually
very well-suited to these early tests since the appearance of
functions at the interface can be completely designed anC the
corresponding functions can be simulated by hardware and
software drivers, scripts, and simulators that are
indistinguishable by a human operator from the real, operational
functions. The use of string test facilities and environment
simuLators has been found to improve the overall success of
software test programs [STE 86).

93

Chapter 5: Planning and Reporting

Theme facilities may 'have secondary benefits to the program.
For instance, integration test facilities that demonstrate human
factors of the man-mathine interface, also tend to be good
vehicles for training and may thus cont:tnue to be useful long
after integration tests have been c~oncluded.

5.3 Reporting Test Results

It might be supposed tIhat in a properly planned test. the
reporting of test results is a simple matter, In fact, test
reporting is often complicated by the limitations of the test,
ambiguous events that are noted during the test, and failures of
instrumentation. This subsection presents some guidelines tbh.t
are useful in reporting test results.

Identifying Discrepancies between Test Article. and Planned
Operational Software

Test evaluations, particularly those aimed at operational
issues, usually include assessments of how closely the test
enviro'nment matches the planned operational environment. In the
case of software, the report of test results should specify any
discrepancies between the software being tested and the
operational software. The impact of these discrepancies on the
test objective being demonstrated should also be included, if it
is known. The following are common sources of discrepancies.

Hardware Differences

Differences between test hardware and operational hardware
can have a profound impact on the performance of the software.
Differences in memory size and organization, instruction
execution speed, processor and instruction set architecture can
all affect the software. Except in rare circumstances, OT
objectives should be satisfied on operational hardware.

Operating System Differences

Run-time operating systems found in typical operational
environments are different than those lused by programmers and
designers. Run-time systems are usually optimized for
performance and intolerant of significant deviations from
specified usage. Operating systems used during development are
usually optimized to allow great latitude on the part of the
programmer and to facilitate sharing of resources such as memory
and I/0 devices. This means that capabilities demonstrated in
the -development environment may not be present in the
operational environment. Any T&E issues that involve operating
system primitives. resources, or calls to system functions
should be redegionstrated in the operational environment.

9 L4

Chapter 5: Planning and Reporting

j Standard Library Calls

Many programming languages and environments implem..nt
standard operations such as mathematical functions and
input-output in library packages that are supposed to be
"standardized*. However. due to differences in computer word
sizes, underlying processor architectures, or any of a dozen
other factors, the performance of these libraries can vary
widely from one system to another. Therefore. if the
operational software is required to compute the natural
logarithm of a real number and does so through a library
function, the accuracy of the returned value may have to be
revalidated in the operational environment, even if the accuracy
was determined perfectly in the development environment.
Standard library calls should not be incorporated into
operational software systems without addressing the possible
differences. Standard sets of benchmark data may be available
from third parties for comparing libraries.

Relating the Test Environment to the Operational Environment

Regardless of the care taken in structuring the
circumstances of a software test, the limits imposed by the test
itself mean that the test environment and the operational
environment have differences. In laboratory testing of air
defense systems, for example, killed targets must be removed

%from the screen by software. It the operational version of the
same system that software is not necessary. The following are
some common test limitations that give rise to discrepancies.

Simulated Inputs

The software may be stimulated in a much different manner in
its operational environment than in its test environment. A
simulator for real-time and embedded applications may not
faithfully model timing conditions at the software level.
Furthermore, actual software behavior may depend on converting
analog events to digitized form ir statistically unpredictable
ways. Simulators, or the other hand almost always choose a
fixed set of statistical models from which to generate digital
stimuli to the software.

Friendly UserE

During unit antC integratioi, testE and to some extent dufing
systew level development T&E (DT&E). the users of the software
may be particularly friendly. They may know, for example that
typing too fast on the keyboare causes the software to "get
lost"; therefore, they will not do it. Operational users cannot
be expected to be friendly. Operational T&E (OT&E) issuer
should be resolved with typical operational usera.

95

Chapter 5S Planning and Reporting

The Maintenance Environment

Determining whether or not the software meets its
maintenance requirements is best accomplished by using typical
maintenance personnel in the environment where the actual
maintenance will be carried out. Developers nay have access to
a host of special tools and capabilities that enable them to
perform maintenance actions. Some of these may be proprietary
or not otherwise deliverable with the operational software.
Thus, using development personnel in the development environment
is usually not a good way to resolve maintenance issues.

Interpreting Test Results in System Terms

In reporting test results it is important to address both
the test objectives and critical T&E insues. If the resulting
assessment deals with operational issues, the test results
should be stated in system oriented terms.

Error C:assification

It is especially important that software's contribution to
operational suitability be properly reported. During laboratory
tests and OT, the classification of test events such as those
that require maintenance actions is an important aspect of test
reporting. [STE 86]. These classifications are analyzed to
assign probable causes of failure and pinpoint system elements
that contribute to high failure rates. system unavailability, or
other attributes that negatively affect system suitability.

Figure 5.3-1 shows the usual oethod of classifying anomalous
conditions (e.g.. failures that arise during tests). Any
incident during the test that requires unscheduled action to
bring the system back to an operational status is an unscheduled
maintenance action. These include failures of both hardware and
software components. Not all of these incidents are classified
as mission failures. Test reports shoula specify those failure
conditions that impair the system's ability to perform an
internded critical function.

S~96

I~.

cr.4

z

0 aa

Li- -nVAU
U)

LaJ&

U))

Chapter St Planning and Reporting

Each software incident that involves a system function I
should be classified by specifying the failure effect, cause,
and required maintenance action. Early agreement in test plans
on a common met of criteria for classifying reliability
incidents is desirabl.e. Common specifications include the
following.

Effect.

1. 1 does not respond to stimulus or operator action.

2. F respon~s to stimulus but does not respond as
intended.

3. 7 responds as intended to stimulus but is
misinterpreted by the operator.

4. F responds to stimulus but with results degraded below
stated threshold.

Cause.

1. Stimulus is outside Fls aitted operating range or
requirements.

2.. Failure is caused by mechanism external to components
implementing F.*

3. Failure is caused by mechanism internal to components
implementing F.

Required Maintenance Action.

1. The effect of the failure is reversed without
maintenance action.

2. The effect of the failure is reversed by action of an
operator to restore the system to a non-failed state.

3. The effect of the failure is reversed by the action of
a maintenance operation that rhanges the software.

4. The effect of the failure cannot be reversed bv any
maintenance action.

-198

"j iChapter 5: Planning and keporting

Downtime Classification

Figure 5.3-2 shows the preferred method of classifying
system downtime during tests. This scheme should also be
applied to the software incidents as specified above. These
downtime assignments are particularly useful in testing for
availability. The following examples illustrate some possible
event classifications based on obderved downtime classifications
of software systems (see Figure 5.3-3).

Fault Tolerant Recovery. In this case. suppose the software
detects the failed state and recovers, thereby placing the
system in an operational state without operator intervention.
The downtime classification for this event is the following:
(1) operating -- the time up to the point at which the fault
occurs, (2) standby -- the time during which recovery takes
place and the failed function is no longer available. (3)
operating -- the time interval commencing after full recovery of
the function takes place.

Responding to Changing Requirements. This represents a
maintenance action in which a change in software requirements
necessitates a re-engineering of a portion of the system. The
corresponding downtime classification is the following: (1)
operating -- this is the period of time until the system is
removed from operation because the 'changed requirements render
the software ineffective in meeting system objectives (this
interval may overlap substantially with the maintenance action
of redesigning the indicated software component). (2) logistic
delay -- this is the period during which re-installation of the
redesigned system takes place. (3) operating -- the time
interval commencing after the re-engineered software becomes
fully operational.

Repair of a Fault. This action may occur at a remote
maintenance facility and have the same downtime profile as the
one given above if it is scheduled. If there is no logistic
downtime (i.e., if the event is unscheduled) ther the downtime
classification is as follows: (1) operating -- the interval
ending rt the point that the failure renders the system
inoperative, (2) active downtime -- the interval during which
the failure is corrected by maintenance action (the oyster: ir
expected to be functicning during this interval, but it is nct),
(3) operating -- the timf interval commencing wher: the failurc
has beer, repaired and the syster: is restored tc operationa.'
status.

99

A
Li.�
0

- m

I
I I

__ F

I-. -

-J N

I-0 Se;

I-b - - LJJ

___ I0
________ mm

__ I

IU

w Li
ii~ II

¶M

L&JJ

Chapter 5t Planning and Reporting

Assessing Software Contributions to System Capabilities

The ultimate goal of reporting test results is to support
the assessments of system level evaluators. Siuce these
assessments are supposed to determine the contribution of
software to risk, visibility into critical aspects of software
design and implementation is an essential aspect of test
report ing.

Test reports are not evaluations. Whether or not a teat
objective has been satisfied is detmrmined by a aseparate
analysis of the test results. The role of the tester is to
independently measure and report the behavior of the system vith
respect to stated criteria. The evaluation process consists of
a progressive assessment of risk based on the test results
contained in test reports, supplemented with information
concerning the extent of testing. The evaluator is ultimately
responsible for assessing whether or not critical T&E issues
have been resolved and to what extent unresolved issues
contribute to overall engineering risk.

If the software development process has been structured and
managed so that there is a progressive flow of intermediate
engineering products and so that continual T&I of these products
has been used to assess suitability ani effectiveness, then
evaluations can proceed in an orderly fashion. If these
products are not available. an evaluatiot: is extraordinarily
difficult to carry out. The key issue here is visibility. In
an integrated system consisting of large quantities of hardware
and software, critical aspects of the software design and
operation are effectively hidden under layers of software-
software and hardware-software interfaces. During unit testing,
for example, it is generally possible to use structural coverage
and functional tests to thoroughly exercise a unit's input
variables. In the integrated system, these variables may be
rec.ptacles for data filtered through several hardware and
software subsystems. Thu. . stressing an individual software
component, as may be required to test a performance or
effectiveness cbaracteristic, may be very hard simply because
the "real" independent variables of the test objective (the
input variables for the unit) are now being controlled by other
subsystems. Achieving a given sta,.us or condition of the unit
may be dependent upon achieving values of the subsystems' inputs
that ere not possible within test limitations.

102

4

Cbapter 5: Planning and Reporting

The evaluation criteria for each of the intermediate
engineering products whould reflect the sequential decomposition
of tect objectives. At the highest level of the evaluation
hierarchy are those indicators and criteria that are used to
judge the overall statue of the test program. Volume I of this
series of manuals elaborates these criteria. Delow this level,
the evaluation criteria should be structured so that they
support one or more criteria from the level directly above. The
most effective method of developing such criteria is to follow
the approach outlined in Section 3.3 for top-down decomposition
of test issues. As each test issue is resolved on the basis of
meeting or failing to meet a specified test objective, the
evaluation criteria for that test should attempt to aggregate
the test results into an overall picture of software system
status until the topmast level of the hierarchy (i.e.. the
system level criteria) has been addressed.

103

CRAPTER 6

SOFTWARE TEST TOOLS AND RESOURCES

Many of the testing methodologies described in Section 5.2
can only be applied with the support of an automated tool.
Without automation, the possibility. of human error during the
application of a testing methodology may negate any "guarantees"
associated with that methodology (e.g.. error coverage
methodologies can only guarantee the absence of specific errors
when they are supported by correctly implemented tools). In
addition, the computational demands imposed by many of the
methodologies make them impossible to implement manually. This
chapter will outline areas of importance to the specification of
automation requirements, provide pointers to sources of
information about existing automated tools, and discuss risks to
be considered during the selection of software testing tools.

6.1 Specifying Requirements for Automated Support

DoD 5000.3-M-1 defines test resources as follows:

Test Resources. -A collective term that encompasses all
elements necessary to plan, conduct, and collect/analyze
data from a test event or program. Test funding is the most
important test resource since all other resource elements
are derived from it. Other elements include test conduct
and support manpower (including TDY costs), test assets (or,
units under test), test asset support equipment. technical
data, simulation models, testbeds, threat simulators.
surrogates and replicas, special instrumentation peculiar to
a given test asset or test event, targets, tracking and data
acquisition instrumentation, and equipment for data
reduction. communications, meteorology, utilities.
photography, calibration, security, recovery, maintenance
and repair, frequency management and control, and
base/facility support services.

The most important software test resources are automated
software testing tools. The primary requirement that must be
satisfied by any automated testing tool applied on a program is
that it support the defined test objectives. For example, if a
low 'Level test object ive is t o exerc- s e S5T of all
decision-to-decision branches in specified units of software.
then an appropriate software testing tool would be one that
instruments the software and reports execution statistics. If
another test objective is to demonstrate that a critical
algorithm can complete processing within 2 milliseconds when the
system is operating under heavy load conditions, the capability
to measure timing statistics must be available.

105

Chapter 6: Softwa.e Test Tools and Resources

It is unlikely that a single testing tool will be able to
support all test objectives for a program. In most cases, a
variety of testing capabilities will be needed. One approach to
satisfying this requirement is the acquisition or composition of
r. toolset to support tasting actilvities. Although this may
currently be the moot feasible tIternative. there are major
pitfalls associated with this approach. The most critical
barrier co the effective use of a set of testing tools is the
fact that unless the tools wore specifically designed to
cooperate, it is very unlikely that they will do so without
significant effort on the part of the tool user or tester. Even
in cases where inter-tool information exchange im not a coicern,
it is desirable that the tools work on a common representation
of the software. Again. this cannot be assumed. An alternate
approach is the acquisition or development of a testing
environment designed and built to maximize cooperation between
elements, minimize proliferation of software representations.
and ease the addition of capabilities. Although implementations
may not be readily available, recent efforts have defined the
functional capabilities necessary to comprise a testing
env.ronment to support the needs of large programs [DeM 86].
Pegardless of the packs~ging. however, the guiding principle when
selecting automated software testing capabilities is that they
should not be employed unless they specifically support a
carefully designed test. Otherwise. their use will not
contribute to the overall goals of the test program.

Individual automated software testing tools can usually be
classified as either static analyzers, dynamic analyzers. er
test support tools. The remainder of this section will discuss
the range of functionality that can be found in these classes of
tools.
Static Analysis Tools

Static analysis tools, or static analyzers, examine
information that can be obtained from a piece of software
without actually executing it. This includes information
pertaining to the component's structure, and aesign or coding
conventions. Existing static analyzers vary greatly in both
scope and functionality, ranging from systems which enforce
standards to those which perform sophisticated analyses.
Functions implemented in static analysis tools are usually
selected from the following set [DAC 85, DeM 37].

Code Auditing. The determination, or enforcement, of
adherence to established procedures or standards.

Completeness Check---,-: The determination of whether or not
all subcomponents n3cessery to form a component are present
and fully developed.

106

- . & --- _ -. . _

Chapter 6: Scftvare Teot Tools and Resources

Consistency Checking: The determination of whether or not
each component is internally consistent in the sense that it
contains uniform notation and terminology. and externally

- consistent with respect to its specification.

Cross Reference: The referencing of entities to other
entities by logical means.

Date Flow Analysis: The graphical analysis of sequential
patterns of data definitions and references to determine
constraints that can be placed on data values at various
points of execution.

Error Checking: The determination of discrepancies, their
importance, and/or their cause.

Interface Analysis: The inspection of the interfaces
between software components for consistency and adherence to
predefined rules and/or axioms.

I/O Specification Analysis: The examination of a software
component's input and output specifications, usually for the
purpose of generating input data.

Type Analysis: The determination of correct use of named
data items and operations, and whether or not the domain of
values attributed to an entity are properly and consistently
defined.

Units Analysis: The determination of whether or not the
units or physical dimensions attributed to an entity are
properly defined and consistently used.

Dynamic Analysis Tools

Dynamic analysis tools, or dynamic analyzers, are tools that
support testing by collecting and examining information
resulting from the direct execution of the software being
tested. Dynamic analyzers can be further classified as symbolic
evaluators, test date generatorE, program instrumenters, or
program mutation analyzers. Eacb of these classes of tools and
the functions they perform will be discussed below.

107

L

Chapter 6i Software Test Tools and Resources

Symbolic Evaluators

Symbolic execution is a verification technique that
simulates software execution using symbols rather than actual
values as input data [DAC 85]. The execution output consists of
logical or mathematical expressions with these symbols
representing the component's variables. Tools that implement
symbolic execution are usually called symbolic evaluators. One
significant function performed by these tools is constraint
evaluation which consists of simplifying path input or output
constraints and determining their consistency with pre-existing
constraints. This function is also implemented in some test
data generators.

Test Data Generators

A test data generator is a tool that aids in the generation
of test data for software components [DeM 87] . This relieves
the tester of much of the tedium involved in the generation of
large amounts of test data and avoids the introduction of bias
into che test set when the tester is, in fact, the software
developer. It should be noted that the test data generator can
only partially automate the construction of test cases, since a
test case consists of both test data and expected output. The
expected output is usually determined by hand calculation or
simulation.

The three primary types of test data generators are
pathwise. data specification. and random test data generators.
Pathwise test data generators create input data that is a
comprehensive representation of the input space by selecting
input data from the input domains associated with the software's
paths. Data specification systems provide a data specification
language that the tester uses to describe the input data. The
system then uses the description to generate the desired input
data. Random test generators select random points from the
domain of each input variable of a component. For the
randomness to be meaningful, it must be applied to both the
selection of data within a path domain and the selection of the
path domains.

Program Instrumenters

Program instrumenters insert monitoring statements, or
prcbes. into the source code of the software component under
test to gather execution data that reveals detailed information
concerning the software's internal behavior and performance.
Functions performed or supported by existing program
instrumenters are usually selected from the following set [DAC
85, DeM 87].

108

jChapter 6: Software Test Tools and Resources

Assertion Checking: The evaluation of user-embe dded
state ,ments in a component that assert relationships between
its elements. An assertion -is a logical expressionii specifying a program state 'that must exist or a set of
conditions that the variables must satisfy at a particular
point during software execution.

Resource Utilization Analysis: The gathering and evaluation
of system hardware or software resource utilization
statistics.

Structural Coverage Analysis: The determination of measures
associated with the invocation of the component's structural
elements to determine the adequacy of a test run. Coverage
analysis is useful when the user is attempting to execute
each statement, branch. path. or iterative structure in a

software component.

Timing Analysis: The estimation or measurement of execution
time of a software component either by summing the execution
times of the instructions in each path, or by inserting
probes at specific points in the software and measuring the
execution time between probes.

Tracing: The construction of a record of all or certain
c~lasses of instru.ctions or events occurring during execution
of a software component.

Tuning: The optimization of system/software performance,

Mutation Testing Tools

Mutation testing tools support test data entry, execution.
and error coverage analysis for the purpose of determining the
adequacy of the test data 'based on the results of program
mutation [DeM 87J . Existing mutation testing systems provide an
interactive test environment. and reporting and debugging
operations that are useful for locating and removing errors.

109

Chapter 6: Software Test Tools and Resources

Toot Support Toole

Test support tools perform a variety of functions such as
test execution coordination. simulation of anavailable inputs or
components, or regression testing [DelI 87]. Automatic test
drivers. also known as test harnesses or testbeds. are software
systems that provide an environment for running software
component tests and simulating missing components or subsystems.
They provide a standard notation for specifying test casev.
automate the verification of test results. and eliminate the
need for writing separate drivers and stubs for unit and
subsystems testing. Simuletors support testing by representing
the circumstances of nominal and stressful operational
scenarios, or other computer systems or software not available
for testing purposes. Regression testing systems support the
selective retesting of modified software to detect faults
introduced during the modification process, or to verify that
changes have not caused unintended effects and that the
component still meets its specified requirements. Other tools
of use during the testing process are data collection and
reduction tools, report generators, and error tracking tools.

Once the desired automated testing capabilities have been
defined, decisions must be made with respect to the system
hardware and software configurations that can be utilized for
t esat ing&. Fo.r each desired capability, the following
requirements must be defined. First. the target language for
the software testing tool must be specified (i.e.. the
programming language used to implement the portion of software
to which the relevant test objective applies). Second., t'be
hardware and operating systems available for the execution of
the tests must be defined. Finally. the resources available
(e.g., memory, storage. throughput) for the purposes of testing
must be estimated. These requirements will be used as selection
criteria and constraints during the evaluation of available
software testing tools.

6.2 Determining Tool Availability

The four primary sources of software testing tools are
government organizations, government contractors, commercial
organizations, and academia. The approach used to locate tools
within each community differs and is described below (see
Appendly 1) for points of contact).

110

Chapter 6: Snftware Test Toole and Reascuzea2

J Communication within the Military Services and other
government organzisations normally follows we11-defined chains of
command. Thus. when trying to identify existing software
testing tools. the first point of contact would be the
individual or group within the Headquarters organizationa that is
responsible for MCCR or embedded computer resources. The next
point of contact would be within the Development Commands. Prom
there. references to individual Program Offices, Logistics
Groups, or Laboratories would be expected.

An exception to this (soon to be the rule) occurs if the
target language of interest is the Ada language. In that case,
the Ada Joint Program Office (DI3SDRE(R&AT)) is the logical
starting point in a search for testing tools-, In Iaddition.

V other government agencies that employ the Ada language (e.g..
Defense Intelligence Agency (DIA). Defense Nuclear Agency (DNA),
National Security Agency (NSA). Defense Advanced Research
Projects Agency (DARPA). Defense Communications Agency (DCA))
may also provide opportunities for automated support of testing.

Pointers to government contractors can be gained by
soliciting references from the government contacts. Inquiries
directed at industrial organizations (e.g.. National Security
Industrial Association (NSIA), Electronics Industries
Association (KIA)) or examination of their conference
proceedings can also prove fruitful.

Commercial vendors can be expected to advertise in tools
catalogs such as Data Sources. Surveys reported in industry
periodicals such cks DATAMATION and DATAPRO are also sources of
information about existing commercial products.

Academic enterprises are usually the subject of publications
in journals and presentations at conferences sponsored by groups
such as the Institute of Electrical and Electronic Engineers
(IEEE) or the Association for Computing Machinery (ACM). In
addition. r-ince university researchers in the areas of computer
science and software engineering communicate extensively over
national networks, examination of networle bulletin boards and
users' groups' newsletters can provide information not available
elsewhere, including critical. reviews of capabilities.

Finally, the Data and Analysis Center for Software maintains
a Software Life Cycle Tools Directory [DAC 85] that includes
entries describing testing tools available from all sourcer
listed above.

It should be notedl that not all tools discussed ini public
forumis are necessarily available, at any price, for public use!
In situations where a tool provides a competitive edge, its
developer may label it as proprietary. Even though it is.-used
duiing the development testing of a software system, it will not
be delivered for use during the maintenance of that syater and
other arrangements will have to be made for regression testing.

Chapter 6: Software Test Tools and Resources

In the event that a tool cannot be acquired or developed to
support the objectives of the overall test program& the software
test planning process must be revisited and the adequacy of the
modified test plans evaluated. In some cases, it may be
sufficient to determine and document the reduced level of
confidence in the test due to the required changes. In other
cases$ however. a significant redesign of the test may be
unavoidable.

6.3 Assessing the Risk of Using Selected Test Tools

Although the process is not as straightforward as that of
purchasing a spreadsheet package for a personal computer, it is
possible to locate and acquire software testing tools. The
available tools differ greatly with respect to maturity, size of
intended user group, level of support, extent of documentation.
restrictions on usage, and price. Knowing whether a tool was
developed as a commercial venture, custom built, developed
in-house, or the product of a laboratory prototyping activity
can temper expectations. Typical attributes of tools resulting
from each of these development paradigms will be described
below.

Commercially built tools are usually the most mature of the
four development types listed above. This is due to the intent
to market the tools to a wide audience and provide- support for
the tools while they are in use. In this case, a company's
profits depend on the quality and usability of the tools. The
need for customer satisfaction with respect to usability implies
a greater likelihood of the existence of training materials and
documentation for the tools. in this case, it is not
unreasonable to request references (i.e., names of individuals
who have experience applying the tools on a real project) so
that relatively unbiased assessments of a tool's effectiveness
and suitability can be considered during the decision-making
process. Since these tools are commercial products.
restrictions on distribution and modification usually exist.

Custom built tools will not usually have been subjected to
the same degree of examination prior to delivery as commercially
ayailable products. In addition, since all costs associated
with development must be borne by a single customer, their
prices are usually significant. For the investment, the
customer can expect a tool that satisfier a specific. customer
need as opposed to a widespread generic need. The degree of
documentation, training aids, and support provided with custom
built tools depends very much• on the customer's willi.ngness tu
support these items. Although it seems apparent that the
customer would own unlimited rights with respect to tools usage.
th.is cannot be assumed; care must be exercised during
negotiation of the tool development contract.

112

Chapter 6: Software Test Tools and Resources

j Software testing tools built "in-house" sraatly resemble
custom built tools. However, one potential hazard associated
with their development must be stressed. With the custom builtI tools described above, it was assumed that a legal contractual
agreement would specify the requirements for the tool's
functionality, documentation, training aids. support, and
acceptance. When the tool development is conducted within the
customer organization, the danger always exists that resources
will be shifted with the changing demands and atmosphere of the
company business. Rather than the tool benefiting from a
concentrated effort. it may be treated as a toy to be worked on
during the development personnel's spare time. The development
of a software testing tool is a software development effort and
must be subjected to the sane discipline as any other
development if similar quality achievements are to be expected.

The final type of tool development to be addressed here is
that of tools resulting from ifforts conducted in a laboratory.
These tools are usually prototypes built for the purpose of
feasibility assessments or proof of principle investigations.
Very seldom are they considered to be "industrial-strength".
They may contain numerous errors, suffer from inefficient
implementation, and have little or no supporting documentation
or training information. The benefits of laboratory tools are
that they usually :'mplement state-of-the-art testing
methodologies and. in some cases, can be obtained for a token
fee. Although it is not wise to assume that a laboratory tool
can be applied to a project "as-is", if resources are available
to productize and support the tool. it can be a good investment.

In cases where the software testing tools are to be
supported by the using organizations, the determination of tool
suitability must be concerned with its maintainability. Issues
of importance include the implementation language of the tool.
the availability of development documentation as opposed to
usage documentation, and the employment of modern software
engineering practices during the tool's development. These
issues are even more important if there are plans to tailor or
add new capabilities to the tool after acquisition. If future
plans include porting the tool to a new hardware/software
configuration, examination of the tool prior to acquisition
should also be concerned with issues such as the isolation of
machine dependencies in the design and the implementation.

113

Chapter 6: Software Test Tools and Resources

A primary requirement for the implementation of a sound
sostware test program is the acquisition of software testing
tools to iupport defined test objectives. Rowever. the use of
these tools may introduce risks to the development project.
First. there are technical risks introduced by unproven tools
that must be eliminated by testing to validate their
correctness. Second. schedule risks are concerned with the tool
being available for the planned software teatinge the allotment
of sufficient tinm for the training of personnel using the
testing tool; the pr-wper amount of tine being allowed for the
actual testing to occur; and the consideration of testing
alternatives in the event that the testing tool is not
available. Third. budget risks address the hidden costs that
are introduced due to the resources needed for the execution of
the testing toolsl the training of personnel for using the
software testing tools; and the maintenance of the tools. The
awareness that these risks may accompany the use of software
testing tools should not discourage their use but ensure that
proper management and planning for the use of automated
technology are incorporated in the software test program.

114

APPENDIX A

LIST Ol ACRONYMS

COTS Commercial Off-the-Shelf

DCP Decision Coordinating Paper

DID Data Item Descriptions

DoD D~partment of Defense

DoDD Department of Defense Directive

DT Development Test

DT&E Development Test and Evaluation

EUD Reads Up Display

I0C Initial Operational Capability

IPS Integrated Program Summary

ISO/OSI International Organization for
Standardization/Open Systems
Interconnection

IV&V Independent Verification and Validation

JRMB Joint Resources Management Board

MCCR Mission Critical Computer Resources

OSD Office, of the Secretary of Defense

OT Operational Test

OT&E Operational Test and Evaluation

OTS Off-the-Shelf

QA Ouality Assurance

SOF Systez Concept Paper

SLOCG Source Lines of Code

SRS Software Requiremente Specification

S i1

SSA Software Support Asency

3S8 Systea/Sessent Specification

STD Software Test Description

STP Software Test Plan

STPR Software Test Procedure

STR Software Test Report

T&E Test and Ev&luation

TEMP Test and Evaluation Master Plan

116

APPENDIX I

REFERENCES

(Alf 771 Alford* N. V., "A Requirements Engineering Methodology
for Real Time Processing Requirements** IEEE
Transactions on Computers, January 1977. pp. 60-69.

[Boa 76] Barry W. Botha. "Software Engineering," IEEE
Transactions on Computers. December 19?6. pp.
1226-1241.

[Boe 81] larry W. Boehm. Software Enaineerint Economics.
Prentice-Rail, Inc.. 1981.

[DAC 85] Data & Analysis Center for Software. "Software Life
Cycle Tools Directory." lIT Research Institute. March
1985.

[DeN 86] Richard A. DeMillo, "Functional Capabilities of a Test
and Evaluation Subenvironment in an Advanced Software
Engineering Environment.w Software Engineering
Research Center Report No. GIT-SERC-86/07, Georgia
Institute of Technology. October 1986.

[DeN 87] Richard A. DeMillo. W. Michael McCracken. R. J.
Martin, and John F. Passafiume, Software Testing and
Evaluation, Benjamin/Cummings Publishing Company.
1987.

[E&V 84] "Evaluation and Validation Plan," Version 2.0.
Prepared for the Ada Joint Program Office.
Wright-Patterson Air Forst Base, Ohio. December 1984.

[EIA 84] Electronics Industries Association. Requirements
Committee, Government Division. "Analyses and
Forecasts of Specific Markets: DoD Computing
Activities & Programs." December 1985.

[Orl 84] Orlando I Software Workshop, Panel B, "Independent
Verification and Validation," Final Report of the
Joint Logistics Commanders' Workshop on Post
DTeployment Software Su p ort (PDSS) foT r
Missi on-Critical Computer Software, Volume -

Workshop Proceedings. June 1984.

[Red 84] Samual T. Redwine, Jr., Louise Giovane Becker, Ann B.
Marmor-Squires, R. J. Martin, Sarah H. Nash, and
William E. Riddle, "DoD Related Software Technology
Requirements. Practices, and Prospects for the
Future," Institute for Defense Analyses Paper P-1788,
June 1984.

117

A •r

[ARo 7711 D. Ross, and 1. Schoman. "Structured Analysis for
Requirements Definition." 1I11 Transactions on
Software Engineering. Jauuary 1977. pp. 6-15.

[STE 861 Software Test and Evaluation Project, "Software Test
and Evaluation Manual. Voluae III. Good Examples of
Software Testing in the Department of Defense."
Software Engineering Research Center Report No.
CIT-SERC-86/06, Georgia Institute of Technology.
October 1986.

[Tei 771 D. Teichroew. and E. Hershey. 'PSL/PSL.: A Computer
Aided Techn ique for Structured Documentation and
Analysis of Information Processing Systems., IEE
Transactions on Software Engineering. January 1977.
pp. 41-48.

118

APPENDIX C

DhPARTMENT 0 DRIINSE DIRECTIVES AND STANDARDS

DoD Directive 5000.1, "Major System Acquisitions," March
12, 1986.

DaD Directive 5000.3, "Test and Evaluation.' March 12.
1986.

DoD 5000.3-M-1. "Test and Evaluation Master Plan
Guidelines." October 1986.

DoD-STD-2167. "Defense System Software Development." June
4, 1985.

119

KF

APPENDIX D

POINTS OF CONTACT

j 3oftware Life Cycle Tools Directory

Data & Analysis Center for Software (DACS)
RADC/COED
Griffiss AFB. New York 13441
(315) 3?6-0937
Autovon 587-3395

Catalogs

Data Sources
P.O. Box 5854
Cherry Hill, New Jersey 08034

DATAPRO
1805 Underwood -Boulevard
Delran, New Jersey 08075
(609) 764-0100

Ada Tools

Ada Information Clearinghouse
Rm0 3D139 (Fern St./C-107)
The Pentagon
Washington, DC 20301-3081
(703) 685-1477

Industry Periodicals

DATAMATION
875 Third Avenue
New York, New York 10022

121

Industrial Organizations

Electronics Industries Assoc.-iation
2001 Eye Street. N.W.
Washington. D.C. 20006
(202) 457-4900

National Security Industrial Association
Suite 901, 1015 15th Street. N.W.
Washington. D.C. 20005
(202) 393-3620

Professional Societies

Association for Computing Machinery
1133 Avenue of the Americas
New York. New York 10036

IEEE Computer Society
Post Office Box 80452
Worldway Postal Center
Los Angeles, CA 90080

122

